Skip to main content
Log in

Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Nickel even though recognized as a trace element, its metabolism is very decisive for certain enzyme activities, maintaining proper cellular redox state and various other biochemical, physiological and growth responses. Study of the aspects related with uptake, transport and distributive localization of Ni is very important in various cellular metabolic processes particularly under increased nitrogen metabolism. This review article, in core, encompasses the dual behavior of Ni in plants emphasizing its systemic partitioning, essentiality and ill effects. However, the core mechanism of molecules involved and the successive physiological conditions required starting from the soil absorption, neutralization and toxicity generated is still elusive, and varies among the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwala SC, Kumar A (1962) The effect of heavy metals and bicarbonate excess on sunflower plants grown in sand culture with special reference to catalase and peroxidase. J Ind Bot Soc 41:77–92

    CAS  Google Scholar 

  • Ahmad A, Abdin MZ (1999) NADH: nitrate reductase and NAD(P)H: nitrate reductase activities in mustard seedlings. Plant Sci 143:1–8

    Article  CAS  Google Scholar 

  • Ahmad MSA, Hussain M, Saddiq R, Alvi AK (2007) Mungbean: a nickel indicator, accumulator or excluder? Bull Environ Contam Toxicol 78:319–324

    Article  CAS  Google Scholar 

  • Alam MM, Hayat S, Ali B, Ahmad A (2007) Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica 45:139–142

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Fariduddin Q, Ahmad A (2009) Nickel: essentiality, toxicity and tolerance in plants. In: Ali B, Hayat S, Ahmad A (eds) Nickel in relation to plants. Narosa Publishing House, New Delhi, India, pp 73–80

    Google Scholar 

  • Alloway BJ (1995) In: Alloway BJ (ed) Heavy metal in soils. Blackie Academic and Professional, London, UK., pp 25–34

    Google Scholar 

  • Andreeva IV, Govorina VV, Vinogradova SB, Yagodin BA (2001) Nickel in plants. Agrokhimiya 3:82–94

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Physiol Plant Mol Biol 55:373–399

    CAS  Google Scholar 

  • Asher CJ (1991) Micronutrients in agriculture. In: Asher CJ (ed). Soil Science Society of America, Madison, WI. pp. 703–723

  • Assuncao AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Article  CAS  Google Scholar 

  • Astros M, Bjorklund A (1996) Hydrogeochemistry of a stream draining sulfide bearing postglacial sediments in Finland. Water Air Soil Pollut 89:233–246

    Article  Google Scholar 

  • Athar R, Ahmad M (2002) Heavy metal toxicity in legume-microsymbiont system. J Plant Nutr 25:369–386

    Article  CAS  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PL (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Baccouch S, Chaoui A, Ferjani EE (1998) Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiol Biochem 36:689–694

    Article  CAS  Google Scholar 

  • Baccouch S, Chaoui A, El Ferjani E (2001) Nickel toxicity induces oxidative damage in Zea mays roots. J Plant Nutr 24:1085–1097

    Article  CAS  Google Scholar 

  • Bai C, Reilly CC, Wood BW (2006) Nickel deficiency disrupts metabolism of ureids, amino acids and organic acids of young pecan foliage. Plant Physiol 140:433–443

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder CH (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder CH (2004) Structural and ultrastructural changes in heavy metal exposed plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystem. Springer, Berlin, Germany, pp 223–248

    Google Scholar 

  • Bashmakov DI, Lukatkin AS, Prasad MNV (2006) Temperate weeds in Russia: sentinels for monitoring trace element pollution and possible application in phytoremediation. In: Trace elements application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environ Sci Technol 39:2210–2218

    Google Scholar 

  • Baunsgaard L, Fuglsang AT, Jahn T, Korthout HA, de Boer AH, Palmgren MG (1998) The 14–3-3 proteins associate with the plant plasma membrane H+-ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system. Plant J 13:661–671

    Article  CAS  Google Scholar 

  • Bethkey PC, Drew MC (1992) Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsium annum during progressive exposure to NaCl salinity. Plant Physiol 99:219–226

    Article  Google Scholar 

  • Bhardwaj R, Arora N, Sharma P, Arora HK (2007) Effects of 28-homobrassinolide on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays L. Asian J Plant Sci 6:765–772

    Article  CAS  Google Scholar 

  • Bhatia NP, Walsh KB, Orlic I, Siegele R, Ashwath N, Baker AJM (2004) Studies on spatial distribution of nickel in leaves and stems of the metal hyperaccumulator Stackhousia tryonii bailey using micro-PIXE and EDXS techniques. Funct Plant Biol 31:1061–1074

    Article  CAS  Google Scholar 

  • Bidwell SD, Crawford SA, Woodrow IE, Sommer-Knudsen J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley. F. Muell). Plant Cell Environ 27:705–716

    Article  CAS  Google Scholar 

  • Bishnoi NR, Sheoran IS, Singh R (1993) Influence of cadmium and nickel on photosynthesis and water relations in wheat leaves of differential insertion levels. Photosynthetica 28:473–479

    CAS  Google Scholar 

  • Boisvert S, Joly D, Leclerc S, Govindachary S, Harnois J, Carpentier R (2007) Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals 20:879–889

    Article  CAS  Google Scholar 

  • Bollard EG (1983) Encyclopedia of plant physiology. In: Luchli, Bieleski RL (eds). Springer, New Series, 15 B. Berlin, Germany. pp. 695–755

  • Boominathan R, Doran PM (2002) Nickel induced oxidative stress in roots of Ni hyperaccumulater Alyssum bertolonii. New Phytol 156:205–215

    Article  CAS  Google Scholar 

  • Boyd RS, Martens SN (1998) Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait. Am J Bot 85:259–265

    Article  CAS  Google Scholar 

  • Breckle SW, Kahle H (1991) Ecological geobotany/autecology and ecotoxicology. Progress in botany, vol 52. Springer, Hedelberg, Berlin, pp 391–406

    Google Scholar 

  • Briat JF, Lebrun M (1999) Plant responses to metal toxicity. C R Acad Sci 322:43–54

    CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA (2004a) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environ Sci Technol 38:5797–5802

    Article  CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Erbe EF, Maugel TK (2004b) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant Soil 265:225–242

    Article  CAS  Google Scholar 

  • Brown PH, Welch RM, Cary EE (1987a) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803

    Article  CAS  Google Scholar 

  • Brown PH, Welch RM, Cary EE, Checkai RT (1987b) Beneficial effects of nickel on plant growth. J Plant Nutr 10:2125–2135

    Article  CAS  Google Scholar 

  • Brune A, Deitz KJ (1995) A comparative analysis of element composition of roots and leaves of barley seedlings grown in the presence of toxic cadmium, molybdenum, nickel and zinc concentrations. J Plant Nutr 18:853–868

    Article  CAS  Google Scholar 

  • Burzynski M, Kolano E (2003) In vivo and in vitro effects of copper and cadmium on the plasma membrane H+-ATPase from cucumber (Cucumis sativus L.) and maize (Zea mays L.) roots. Acta Physiol Plant 25:39–45

    Article  CAS  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminum on net efflux of nitrate and potassium from root tips of soybean (Glycine max L.). J Plant Physiol 130:400–403

    Google Scholar 

  • Camoni L, Fullone MR, Marra M, Aducci P (1998) The plasma membrane H+-ATPase from maize roots is phosphorylated in the C-terminal domain by a calcium-dependent protein kinase. Physiol Plant 104:549–555

    Article  CAS  Google Scholar 

  • Cardoso PF, Gratao PL, Gomes-Junior AL, Medici LO, Azevedo RA (2005) Response of Crotalaria juncea to nickel exposure. Braz J Plant Physiol 17:267–272

    Article  CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1978) Nickel in plants I. Uptake kinetics using intact soybean seedlings. Plant Physiol Biochem 62:563–565

    CAS  Google Scholar 

  • Cataldo DA, McFadden KM, Garland TR, Wildung RE (1988) Organic constituents and complexation of nickel (II), iron (III), cadmium (II) and plutonium (IV) in soybean xylem exudates. Plant Physiol 86:734–739

    Article  CAS  Google Scholar 

  • Chen C, Chen TH, Lo KF, Chiu CY (2004) Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Sci 166:103–111

    Article  CAS  Google Scholar 

  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37:304–313

    CAS  Google Scholar 

  • Dalton DA, Evans HJ, Hanus FJ (1985) Stimulation by nickel of soil microbial urease activity and urease and hydrogenase activities in soybeans grown in a low-nickel soil. Plant Soil 88:245–258

    Article  CAS  Google Scholar 

  • Dan TV, Krishnaraj S, Saxena PK (2002) Cadmium and nickel uptake and accumulation in scented Geranium (Pelargonielm sp’.Frensham’). Water Air Soil Pollut 137:355–364

    Article  CAS  Google Scholar 

  • Dat JF, Van Breusegem F, Vandenabeele S, Vranova E, Van Montague M, Inze D (2000) Dual action of active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  Google Scholar 

  • DeKock PC, Commissong K, Farmer VG, Inkson RHE (1960) Inter-relationship of catalase, peroxidase, hematin and chlorophyll. Plant Physiol 35:599–604

    Article  CAS  Google Scholar 

  • Devi SR, Prasad MNV (2004) Membrane lipid alterations in heavy metal exposed plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. Narosa Publishing House, New Delhi, India, pp 127–145

    Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  CAS  Google Scholar 

  • Diaz J, Bernal A, Pomar F, Merino F (2001) Induction of skhikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161:179–188

    Article  CAS  Google Scholar 

  • Dixon NE, Hinds JA, Fihelly AK, Gozala C, Winzor DJ, Blakeley RL, Zerner B (1980) Jack bean urease (EC 3.5.1.5). IV. The molecular size and mechanism of inhibition by hydroxamic acids. Spectrophotometric fixation of enzymes with reversible inhibitors. Can J Biochem 58:1323–1334

    Article  CAS  Google Scholar 

  • Easton DF (1992) In: Nieboer E, Nriagu JO (eds) Nickel and human health: current perspectives. Wiley, New York, pp 603–619

    Google Scholar 

  • El-Sheekh MM (1993) Inhibition of photosystem II in the green alga Scenedesmus obliguus by nickel. Biochem Physiol Pflanzen 188:363–372

    CAS  Google Scholar 

  • El-Shintinawy F, El-Ansary A (2000) Differential effect of Cd2+ and Ni2+ on amino acid metabolism in soybean seedlings. Biol Plant 43:79–84

    Article  CAS  Google Scholar 

  • Eskew DL, Welch RM, Cary EE (1983) Nickel: an essential micronutrient for legumes and possibly all higher plants. Science 222:691–693

    Article  Google Scholar 

  • Eskew DL, Welch RM, Norvell WA (1984) Nickel in higher plants: further evidence for an essential role. Plant Physiol 76:691–693

    Article  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418–424

    Article  CAS  Google Scholar 

  • Fodor E, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147:87–92

    CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert K (1994) Photooxidative stress in plants. Physiol Plant 92:692–717

    Article  Google Scholar 

  • Fu C, Olsen JW, Maier RJ (1995) HypB protein of Bradyrhizobium japonicum is a metal-binding GTPase capable of binding 18 divalent nickel ions per dimmer. Proc Natl Acad Sci 92:2333–2337

    Article  CAS  Google Scholar 

  • Gabbirielli R, Pandolfini T (1984) Effect of Mg2+ and Ca2+ on the response to nickel toxicity in a serpentine endemic and nickel-accumulating species. Physiol Plant 62:540–544

    Article  Google Scholar 

  • Gajewska E, Sklodowska M (2005) Antioxidative responses and proline level in leaves and roots of pea plants subjected to nickel stress. Acta Physiol Plant 27:329–339

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20:27–36

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul 54:179–188

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll content in wheat shoots. Biol Plant 50:653–659

    Article  CAS  Google Scholar 

  • Gajewska E, Wielanek M, Bergier K, Skłodowska M (2009) Nickel-induced depression of nitrogen assimilation in wheat roots. Acta Physiol Plant 31:1291–1300

    Article  CAS  Google Scholar 

  • Gendre D (2007) TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine Ni/Fe transporter. Plant J 49:1–15

    Article  CAS  Google Scholar 

  • Genrich I, Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    Google Scholar 

  • Gerendas J, Sattelmacher B (1997a) Significance of N source (Urea vs. NH4NO3. and Ni supply for growth, urease activity and nitrogen metabolism of zucchini (Cucurbita pepo var. giromontiina. Plant Soil 196:217–222

    Article  CAS  Google Scholar 

  • Gerendas J, Sattelmacher B (1997b) Significance of Ni supply for growth, urease activity and the concentrations of urea, amino acids and mineral nutrients of urea grown plants. Plant Soil 190:153–162

    Article  CAS  Google Scholar 

  • Gerendas J, Sattelmacher B (1999) Influence of Ni supply on growth and nitrogen metabolism of Brassica napus L. grown with NH4NO3 or urea as N source. Ann Bot 83:65–71

    Article  CAS  Google Scholar 

  • Goncalves SC et al (2007) Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza 17:677–686

    Article  CAS  Google Scholar 

  • Gouia H, Ghorbal MH, Meyer C (2000) Effects of cadmium on activity of nitrate reductase and other enzymes of nitrate assimilation pathway in bean. Plant Physiol Biochem 38:629–638

    Article  CAS  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Haag-Kerwer A, Schafer H, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot 50:1827–1835

    Article  CAS  Google Scholar 

  • Hao FS, Wang XC, Chen J (2006) Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci 170:151–158

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. Environ Pollut 151:60–66

    Article  CAS  Google Scholar 

  • Hausinger RP (1997) Metallocenter assembly in nickel-containing enzymes. J Biol Inorg Chem 2:279–286

    Article  CAS  Google Scholar 

  • Heath SM, Southworth D, D’Allura JA (1997) Localization of nickel in epidermal subsidiary cells of leaves of Thlaspi montanum var siskiyouense (Brassicaceae using energy-dispersive X-ray microanalysis. Int J Plant Sci 158:184–188

    Article  CAS  Google Scholar 

  • Hirai M, Kawai-Hirai R, Hirai T, Ueki T (1993) Structural change of Jack Bean urease induced by addition of surfactants studied with synchrotron-radiation small-angle X-ray scattering. Eur J Biochem 215:55–61

    Article  CAS  Google Scholar 

  • Homer FA, Reeves RD, Brooks RR, Baker AJM (1991) Characterization of the nickel-rich extract from the nickel hyperaccumulator Dichapetalum gelonioides. Phytochem 30:2141–2145

    Article  CAS  Google Scholar 

  • Igamberdiev AU, Lea PJ (2002) The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organism. Phytochemistry 60:651–674

    Article  CAS  Google Scholar 

  • Israili AW (1992) Occurrence of heavy metals in Ganga river and sediments. Indian J Environ Health 34:63–66

    CAS  Google Scholar 

  • Ivanov VB (1994) Root growth responses to chemicals. Sov Sci Rev Ser D. 1–70

  • Jahn T, Fuglsang AT, Olsson A, Bruntrup IM, Collinge DB, Volkmann D, Sommarin M, Palmgren MG, Larsson C (1997) The 14–3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H+-ATPase. Plant Cell 9:1805–1814

    Article  CAS  Google Scholar 

  • Janicka-Russak M, Kabala K, Burzynski M, Klobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press Inc, Boca Raton, FL, p 413

    Google Scholar 

  • Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicol 149:43–50

    Article  CAS  Google Scholar 

  • Kennedy CD, Gonsalves FAN (1989) The action of divalent Zn, Cd, Hg, Cu and Pb ions on the ATPase activity of plasma membrane fraction isolated from roots of Zea mays. Plant Soil 117:167–175

    Article  CAS  Google Scholar 

  • Kerby RL, Ludden PW, Roberts GP (1997) In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of cooCTJ. J Bacteriol 179:2259–2266

    CAS  Google Scholar 

  • Kerkeb L, Kramer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    Article  CAS  Google Scholar 

  • Kersten WJ, Brooks RR, Reeves RD, Jaffre T (1980) Nature of nickel complexes in Psychotria douarrei and other nickel-accumulating plants. Phytochem 19:1963–1965

    Article  CAS  Google Scholar 

  • Kovacevic G, Kastori R, Merkulov LJ (1999) Dry matter and leaf structure in young wheat plants as affected by Cd, lead, and nickel. Biol Plantarum 42:119–123

    Article  CAS  Google Scholar 

  • Kozlow MV (2005) Pollution resistance of mountain birch, Betula pubescens subsp. czerepanovii, near the copper-nickel smelter: natural selection or phenotypic acclimation? Chemosphere 59:189–197

    Article  CAS  Google Scholar 

  • Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  CAS  Google Scholar 

  • Krogmeier MJ, McCarty GW, Bremner JM (1989) Phytotoxicity of foliar-applied urea. Proc Natl Acad Sci USA 86:8189–8191

    Article  CAS  Google Scholar 

  • Krupa Z, Siedlecka A, Maksymiec W, Baszynski T (1993) In vitro responses of photosynthetic apparatus of Phaseolus vulgaris L. to nickel toxicity. Plant Physiol 142:664–668

    CAS  Google Scholar 

  • Kupper H, Kupper F, Spiller M (1996) Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Article  Google Scholar 

  • Kupper H, Kupper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58:123–133

    Article  CAS  Google Scholar 

  • Kupper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–3000

    Article  CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyper accumulator Arabidopsis halleri. Planta 212:75–84

    Article  Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffre T (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochem 16:1503–1505

    Article  CAS  Google Scholar 

  • Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Rad Biol Med 37:1921–1942

    Article  CAS  Google Scholar 

  • Liu D, Jiang W, Guo L, Hao Y, Lu C, Zhao F (1994) Effects of nickel sulphate on root growth and nucleoli in root tip cells of Allium cepa. Isra. J Plant Sci 42:143–148

    CAS  Google Scholar 

  • Liu D, Kottke I (2003) Subcellular localization of chromium and nickel in root cells of Allium cepa by EELS and ESI. Cell Biol Toxicol 19:299–311

    Article  CAS  Google Scholar 

  • Maheshwari R, Dubey RS (2007) Nickel toxicity inhibits ribonuclease and protease activities in rice seedlings: protective effects of proline. Plant Growth Regul 51:231–243

    Article  CAS  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Marschner H (2002) Mineral nutrition of higher plants, 3rd edn. Academic Press, London, pp 364–369

    Google Scholar 

  • Martin RB (1986) Bioinorganic chemistry of toxic metal ions. In: Singel H, Singel A (eds) Metal ions in biological systems, concepts on metal ion toxicity. Marcel Dekker, New York, pp 25–61

    Google Scholar 

  • McGrath SP (1995) In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic and Professional, London, pp 152–174

    Google Scholar 

  • McClure PR, Kochian LV, Spanswick RM, Shaff JE (1990a) Evidence for cotransport of nitrate and protons in maize roots. I. Effect of nitrate on the membrane potential. Plant Physiol 93:281–289

    Article  CAS  Google Scholar 

  • McClure PR, Kochian LV, Spanswick RM, Shaff JE (1990b) Evidence for cotransport of nitrate and protons in maize roots. II. Measurements of NO 3 and H+ fluxes with ion selective microelectrodes. Plant Physiology 93:290–294

    Article  CAS  Google Scholar 

  • Mcllveen WD, Negusanti JJ (1994) Nickel in the terrestrial environment. Sci Total Environ 148:109–138

    Article  Google Scholar 

  • McNear DH, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL (2005) Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environ Sci Technol 39:2210–2218

    Article  CAS  Google Scholar 

  • Mishra S, Agrawal SB (2006) Interactive effects between supplemental ultraviolet-B radiation and heavy metals on the growth and biochemical characteristics of Spinacia oleracea L. Braz J Plant Physiol 18:307–314

    Article  CAS  Google Scholar 

  • Mohanty N, Vass I, Demeter S (1989) Impairment of photosystem 2 activity at the level of secondary quinone acceptor in chloroplasts treated with cobalt, nickel and zinc ions. Physiol Plant 76:386–390

    CAS  Google Scholar 

  • Molas J (1997) Changes in morphological and anatomical structure of cabbage (Brassica oleracera L.) outer leaves and in ultrastructure of their chloroplasts caused by an in vitro excess of nickel. Photosynthetica 34:513–522

    Article  CAS  Google Scholar 

  • Molas J (2002) Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni II complexes. Environ Exp Bot 47:115–126

    Article  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Ann Rev Plant Physiol Plant Mol Biol 52:559–561

    Article  Google Scholar 

  • Mysliwa-Kurdziel B, Prasad MNV, Strzalka K (2004) Photosynthesis in heavy metal stressed plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. Narosa Publishing House, New Delhi, India, pp 146–181

    Google Scholar 

  • Nabais C, Freitas H, Hagemeyer J, Breckle SW (1996) Radial distribution of Ni in stemwood of Quercus ilex L. trees grown on serpentine and sandy loam (Umbric Leptosol. Soils of NE-Portugal. Plant Soil 183:181–185

    Article  CAS  Google Scholar 

  • Neumann PM, Chamel A (1986) Comprative phloem mobility of nickel in nonsenscent plants. Plant Physiol 81:689–691

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Ochiai EI (1977) Bioinorganic chemistry: an introduction. Allyn and Bacon, Boston

    Google Scholar 

  • Orlov DS, Sadovnikova LK, Lozanovskaya IN (2002) Ecology and protection of biosphere under chemical pollution. Vysshaya Shkola, Moscow

  • Page V, Feller U (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat. Ann Bot 96:425–434

    Article  CAS  Google Scholar 

  • Pandaa GC, Dasa SK, Bandopadhyayb TS, Guha AK (2007) Adsorption of nickel on husk of Lathyrus sativus: behavior and binding mechanism. Colloids Surf B Biointerfaces 57:135–142

    Article  CAS  Google Scholar 

  • Panday N, Sharma CP (2002) Effect of heavy metals CO2+, Ni2+, and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  Google Scholar 

  • Pandolfini T, Gabbrielli R, Comparini C (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ 15:719–725

    Article  CAS  Google Scholar 

  • Parida BK, Chhibba JM, Nayyar VK (2003) Effect of nickel contaminated soil on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hort 98:113–119

    Article  CAS  Google Scholar 

  • Peralta-Videaa JR, Gardea-Torresdey JL, Gomezc E, Tiemanna KJ, Parsonsa JG, Carrillod G (2002) Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ Pollut 119:291–301

    Article  Google Scholar 

  • Persans MW, Yan X, Jean-Marc ML, Krämer PU, Salt DE (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (hálácsy). Plant Physiol 121:1117–1126

    Article  CAS  Google Scholar 

  • Pillay SV, Rao VS, Rao KVN (1996) Effect of nickel toxicity in Hyptis suareeolens (L.) Poit. and Helianthus annuus L. Indian J Plant Physiol 1:153–156

    CAS  Google Scholar 

  • Pitzschke A, Fornazi C, Hirt H (2006) Reactive oxygen species signalling in plants. Antioxid Redox Signal 8:1757–1764

    Article  CAS  Google Scholar 

  • Polaccao J, Freyermuth S, Gerendas J, Cianzio S (1999) Soyabean genes involved in nickel insertion into urease. J Exp Bot 50:1149–1156

    Article  Google Scholar 

  • Pollard AJ, Powell KD, Harper HA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    Article  CAS  Google Scholar 

  • Portillo F (2000) Regulation of plasma membrane H+-ATPase in fungi and plants. Biochim Biophys Acta 1469:31–42

    CAS  Google Scholar 

  • Prasad MNV (1997) Trace elements. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, USA, pp 207–249

    Google Scholar 

  • Prasad SM, Dwivedi R, Zeeshan M (2005) Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 43:177–185

    Article  CAS  Google Scholar 

  • Psaras GK, Manetas Y (2001) Nickel localization in seeds of the metal hyperaccumulator Thlaspi pindicum Hausskn. Ann Bot 88:513–516

    Article  CAS  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28:393–404

    Article  CAS  Google Scholar 

  • Rai PK, Rai LC (1997) Interactive effects of UV-B and Cu on photosynthesis, uptake and metabolism of nutrients in a green alga Chlorella vulgaris under simulated ozone column. J Gen Appl Microbiol 43:281–288

    Article  CAS  Google Scholar 

  • Randhawa VK, Zhou FX, Nalewajko C, Kushner DJ (2001) Role of oxidative stress and thiol antioxidant enzymes in nickel toxicity and resistance in strains of the green alga Scenedesmus acutus f. alternans. Can J Microbiol 47:987–993

    Article  CAS  Google Scholar 

  • Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L.) Millspauga in response to Zn and Ni stress. Plant Sci 157:113–128

    Article  Google Scholar 

  • Raskin I, Ensley BD (2000) In: Ensley BD, Raskin I (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, USA. p. 303

  • Rauser WE, Dumbroff EB (1981) Effects of Excess Cobalt, Nickel and Zinc on the Water Relations of Phaseolus vulgaris. Environ Exp Bot 21:249–255

    Article  CAS  Google Scholar 

  • Ros R, Cooke DT, Burden RS, James CS (1990) Effect of herbicide MCPA and the heavy metals, cadmium and nickel, on the lipid composition, Mg-ATPase activity and fluidity of plasma membrane from rice, Oryza sativa cv. Bhatia shoots. J Exp Bot 41:457–462

    Article  CAS  Google Scholar 

  • Ros R, Morales A, Segura J, Picazo I (1992) In vivo and in vitro effects of nickel and cadmium on the plasma ATPase from rice (Oryza sativa L.) shoots and roots. Plant Sci 83:1–6

    Article  CAS  Google Scholar 

  • Rubio MI, Escrig I, Martinezcortina C, Lopezbvenet FJ, Sanz A (1994) Cadmium and nickel accumulation in rice plants–effect of mineral nutrition and possible interaction of abscissic acid and gibberellic acids. Plant Growth Regul 14:151–157

    Article  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  Google Scholar 

  • Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH (1998) Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminate. Phytochem 47:339–343

    Article  CAS  Google Scholar 

  • Sajwan KS, Ornes WH, Youngblood TV, Alva AK (1996) Uptake of soil applied cadmium, nickel and selenium by bush beans. Water Air Soil Poll 91:209–217

    Article  CAS  Google Scholar 

  • Salt DE, Kramer U (1999) Mechanisms of metal hyperaccumulation in plants. In: Ensley BD, Raskin I (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, USA, pp 231–246

    Google Scholar 

  • Salt DE, Kato N, Kramer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRS Press LLC, London, pp 189–200

    Google Scholar 

  • Samantaray S, Rout GR, Das P (1997) Tolerance of rice to nickel in nutrient solution. Biol Plant 40:295–298

    Article  CAS  Google Scholar 

  • Schaller GE, Sussman MR (1988a) Phosphorylation of the plasma membrane H+-ATPase of oat roots by a calcium-stimulated protein kinase. Planta 173:509–551

    Article  CAS  Google Scholar 

  • Schaller GE, Sussman MR (1988b) Phosphorylation of the plasma membrane H+-ATPase of oat roots by a calcium-stimulated protein kinase. Planta 173:509–551

    Article  CAS  Google Scholar 

  • Schickler H, Caspi H (1999) Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiol Plant 105:39–44

    Article  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy-metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  CAS  Google Scholar 

  • Shalygo NV, Kolensikova NV, Voronetskaya VV, Averina NG (1999) Effects of Mn2+, Fe2+, Co2+ and Ni2+ on chlorophyll accumulation and early stages of chlorophyll formation of greening barley seedling. Russ J Plant Physiol 46:496–501

    CAS  Google Scholar 

  • Seregin IV, Ivanov VB (1997) Is the endodermal barrier the only factor preventing the inhibition of root branching by heavy metal salts? Fiziol Rast Moscow 44:922–925 (Russ J Plant Physiol Engl Transl, pp. 797–800)

    Google Scholar 

  • Seregin IV, Ivanov VB (1998) The transport of cadmium and lead ions through root tissues. Fiziol Rast Moscow 45:899–905 (Russ J Plant Physiol Engl Transl, pp. 780–785)

    Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants, Fiziol. Rast. Moscow 48: 606–630 (Russ J Plant Physiol Engl Transl, pp. 523–544)

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD, Kazyumina EM, Ivanov VB (2003) Nickel toxicity and distribution in maize roots. Russ J Plant Physiol 50:711–717

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD, Davydova MA, Bystrova EI, Schat H, Ivanov VB (2007) The role of root and shoot tissues of excluders and hyperaccumulators in nickel transport and accumulation. Doklady Biol Sci 415:295–297

    Article  CAS  Google Scholar 

  • Severne BC (1974) Nickel accumulation by Hybanthus oribundus. Nature 248:807–808

    Article  CAS  Google Scholar 

  • Sharma P, Bhardwaj R (2008) Effect of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol Plant 52:767–770

    Article  CAS  Google Scholar 

  • Sharma P, Bhardwaj R, Arora N, Arora HK, Kumar A (2008) Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol Plant 52:767–770

    Article  CAS  Google Scholar 

  • Shaw BP, Sahu SK, Mishra RK (2004) Heavy metal induced oxidative damage in terrestrial plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. Narosa Publishing House, New Delhi, India, pp 84–126

    Google Scholar 

  • Sheoran IS, Aggarwal N, Singh R (1990a) Effect of cadmium and nickel on in vivo carbon dioxide exchange rate of pigeon pea (Cajanus cajan L.). Plant Soil 129:243–249

    CAS  Google Scholar 

  • Sheoran IS, Singal HR, Singh R (1990b) Effect of cadmium and nickel on photosynthesis and enzymes of the photosynthetic carbon reduction cycle in pigeonepa (Cajanus cajan L. Photosynthesis Res 23:345–351

    Article  CAS  Google Scholar 

  • Simonovicova M, Tamas L, Huttova J, Mistrik I (2004) Effect of aluminum on oxidative stress related enzymes activities in barley roots. Biol Plant 48:261–266

    Article  CAS  Google Scholar 

  • Singh DP, Khare P, Singh PS (1989) Effect of Ni2+, Hg2+ and Cu2+ on growth, oxygen evolution and photosynthetic electron transport in Cylindrospermum IU 942. J Plant Physiol 134:406–412

    CAS  Google Scholar 

  • Sirko A, Brodzik R (2000) Plant ureases: roles and regulation. Acta Biochim Polon 47:1189–1195

    CAS  Google Scholar 

  • Strass A, Horst WJ (1995) Effect of aluminum on membrane properties of soybean (Glycine max). cells in suspension culture. Plant Sci 171:113–118

    Google Scholar 

  • Sun EJ, Wu FY (1998) Along-vein necrosis as indicator symptom on water spinach caused by nickel in water culture. Bot Bull Acad Sin 39:255–259

    CAS  Google Scholar 

  • Sunderman FW, Oskarsson A (1991) Metals and their compounds in the environment. In: Merian E, Weinheim VCH (eds). pp. 1101–1126

  • Szalontai B et al (1999) Molecular rearrangements of thylakoids after heavy metal poisoning, as seen by Fourier transform infrared (FTIR. and electron spin resonance (ESR. spectroscopy. Photosynth Res 61:241–252

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4rd edn. Sinauer Associates, Sunderland, MA, pp 607–611

    Google Scholar 

  • Tan XW, Ikeda H, Oda M (2000) Effects of nickel concentration in the nutrient solution on the nitrogen assimilation and growth on tomato seedlings in hydroponic culture supplied with urea or nitrate as the sole nitrogen solution. Sci Hort 84:265–273

    Article  CAS  Google Scholar 

  • Temp GA (1991) Nickel in plants and its toxicity: Ustoichivost’k tyazhelym metallam dikorastushchikh vidov (Resistance of wild species to heavy metals). In: Alekseeva-Popova NV (ed). Lenuprizdat, Leningrad. pp. 139–146

  • Torreilles J, Guérin MC (1990) Nickel (II) as a temporary catalyst for hydroxyl radical generation. FEBS Lett 272:58–60

    Article  CAS  Google Scholar 

  • Tripathy BC, Bhatia B, Mohanty P (1981) Inactivation of chloroplast photosynthetic electron-transport activity by Ni2+. Biochem Biophys Acta 638:217–224

    Article  CAS  Google Scholar 

  • Tripathy BC, Bhatia B, Mohanty P (1983) Cobalt ions inhibit electron transport activity of photosystem II without affecting photosystem I. Biochim Biophys Acta 722:88–93

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1986) Inhibition of photosynthesis in Phaseolus valgaris by treatment with toxic concentration of Zinc: effects on electron transport and photophosphorylation. Physiol Plant 66:717–721

    Article  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  CAS  Google Scholar 

  • Vuletic M, Kohler K (1990) Effect of aluminum on the channels in plant membranes. Studies Biophys 138:185–188

    CAS  Google Scholar 

  • Walker CD, Graham RD, Madison JT, Cary EE, Welch RM (1985) Effects of Ni deficiency on some nitrogen metabolites in cowpeas (Vigna unguiculata L. Walp). Plant Physiol 79:474–479

    Article  CAS  Google Scholar 

  • Watt RK, Ludden PW (1998) The identification, purification, and characterization of CooJ. J Biol Chem 273:10019–10025

    Article  CAS  Google Scholar 

  • Welch RM (1981) The biological significance of nickel. J Plant Nutr 3:345–356

    Article  CAS  Google Scholar 

  • Xylander M, Braune W (1994) Influence of nickel on the green alga Haematococcus lacustris Rostafinski in phases of its life cycle. J Plant Physiol 144:86–93

    Google Scholar 

  • Yang X, Baliger VC, Martens DC, Clark RB (1996) Cadmium effects on influx and transport of mineral nutrients in plant species. J Plant Nutr 19:643–656

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Hasan SA, Ahmad A (2010) Protective responses of 28 homobrssinolide in cultivars of Triticum aestivum with different levels of nickel. Archv Environ Contam Toxico (in press)

  • Zhang L, Angle JS, Chaney RL (2007) Do high-nickel leaves shed by the nickel hyperaccumulator Alyssum murale inhibit seed germination of competing plants? New Phytol 173:509–516

    Article  CAS  Google Scholar 

  • Zoller T, Skroppa T, Johnsen O, Polle A (2003) Apoplastic peroxidases in needles of Norway spruce (Picea abies progenies from different crossing environments. Forstwissenchaftliches Central blatt 122:153–159

    Article  Google Scholar 

  • Zwolsman JJG, Van Bokhoven AJ (2007) Impact of summer droughts on water quality of the Rhine River-a preview of climate change. Water Sci Technol 56:45–55

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Fariduddin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yusuf, M., Fariduddin, Q., Hayat, S. et al. Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants. Bull Environ Contam Toxicol 86, 1–17 (2011). https://doi.org/10.1007/s00128-010-0171-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-010-0171-1

Keywords

Navigation