Skip to main content
Log in

Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat “Zak”. Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouting in wheat, especially those cultivars with white kernels. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature grain. Three mutant lines called Zak ERA8, Zak ERA19A, and Zak ERA19B (Zak ENHANCED RESPONSE to ABA) were recovered based on failure to germinate on 5 μM ABA. All three mutants resulted in increased ABA sensitivity over a wide range of concentrations such that a phenotype can be detected at very low ABA concentrations. Wheat loses sensitivity to ABA inhibition of germination with extended periods of dry after-ripening. All three mutants recovered required more time to after-ripen sufficiently to germinate in the absence of ABA and to lose sensitivity to 5 μM ABA. However, an increase in ABA sensitivity could be detected after as long as 3 years of after-ripening using high ABA concentrations. The Zak ERA8 line showed the strongest phenotype and segregated as a single semi-dominant mutation. This mutation resulted in no obvious decrease in yield and is a good candidate gene for breeding preharvest sprouting tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrero J, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Phys 150:1006–1021

    Article  CAS  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York

    Google Scholar 

  • Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241

    Article  PubMed  CAS  Google Scholar 

  • DePauw RM, McCaig TN (1991) Components of variation, heritabilities and correlations of indices of sprouting tolerance and seed dormancy in Triticum spp. Euphytica 52:221–229

    Article  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  PubMed  CAS  Google Scholar 

  • Flintham JE (2000) Different genetic components control coat-imposed and embryo-imposed dormancy in wheat. Seed Sci Res 10:43–50

    Article  Google Scholar 

  • Flintham JE, Adlam R, Bassoi M, Holdsworth M, Gale M (2002) Mapping genes for resistance to sprouting damage in wheat. Euphytica 126:39–45

    Article  CAS  Google Scholar 

  • Fofana B, Humphreys DG, Rasul G, Cloutier S, Brûlé-Babel A, Woods S, Lukow OM, Somers DJ (2009) Mapping quantative trait loci controlling pre-harvest sprouting resistance in a red x white seeded spring wheat cross. Euphytica 165:509–521

    Article  CAS  Google Scholar 

  • Gerjets T, Scholefield D, Foulkes MJ, Lenton JR, Holdsworth MJ (2010) An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses. J Exp Bot 61(2):597–607

    Article  PubMed  CAS  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126

    PubMed  CAS  Google Scholar 

  • Gómez-Cadenas A, Verhey SD, Holappa LD, Shen Q, Ho T-hD, Walker-Simmons MK (1999) An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. P Natl Acad Sci USA 96:1767–1772

    Article  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1909

    PubMed  CAS  Google Scholar 

  • Groos C, Gay G, Perretant M-R, Gervais L, Bernard M, Dedryver F, Charmet G (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread-wheat cross. Theor Appl Genet 104:39–47

    Article  PubMed  CAS  Google Scholar 

  • Himi E, Mares DJ, Yanagisawa A, Noda K (2002) Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. J Exp Bot 53(374):1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487

    Article  PubMed  CAS  Google Scholar 

  • Imtiaz M, Ogbonnaya FC, Oman J, van Ginkel M (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 178:1725–1736

    Article  PubMed  CAS  Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Phys 130:837–846

    Article  Google Scholar 

  • Karssen CM, der Brinkhorst-van Swan DLC, Breekland AE, Koornneef M (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies in abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157:158–165

    Article  CAS  Google Scholar 

  • Kawakami N, Miyake Y, Noda K (1997) ABA insensitivity and low ABA levels during seed development of non-dormant wheat mutants. J Exp Bot 48(312):1415–1421

    Article  CAS  Google Scholar 

  • Kidwell KK, Shelton GB, DeMacon VL, Morris CF, Engle DA, Burns JW, Line RF, Konzak CF, Hatchett JH (2002) Registration of ‘Zak’ wheat. Crop Sci 42:661–662

    Article  Google Scholar 

  • King RW (1984) Water uptake in relation to pre-harvest sprouting damage in wheat: grain characteristics. Aust J Agr Res 35:337–345

    Article  Google Scholar 

  • King RW, Richards RA (1984) Water uptake in relation to pre-harvest sprouting damage in wheat: ear characteristics. Aust J Agr Res 35:327–336

    Article  Google Scholar 

  • King RW, von Wettstein-Knowles P (2000) Epicuticular waxes and regulation of ear wetting and pre-harvest sprouting in barley and wheat. Euphytica 112:157–166

    Article  Google Scholar 

  • Kobayashi F, Takumi S, Nakamura C (2008) Increased freezing tolerance in an ABA-hypersensitive mutant of common wheat. J Plant Physiol 165:224–232

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Cai S, Graybosch R, Chen C, Bai G (2008) Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theor Appl Genet 117:691–699

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Bai G, Cai S, Chen C (2011) Dissection of genetic components of preharvest sprouting resistance in white wheat. Mol Breeding 27:511–523

    Article  Google Scholar 

  • Mares DJ, Mrva K (2001) Mapping quantitative trait loci associated with variation in grain dormancy in Australian wheat. Aust J Agr Res 52:1257–1265

    Article  CAS  Google Scholar 

  • McKibbin RS, Wilkinson MD, Bailey PC, Flintham JE, Andrew LM, Lazzeri PA, Gale MD, Lenton JR, Holdsworth MJ (2002) Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. P Natl Acad Sci USA 99:10203–10208

    Article  CAS  Google Scholar 

  • Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, Reid JB, Gubler F (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant J 45:942–954

    Article  PubMed  CAS  Google Scholar 

  • Molina-Cano JL, Sopena A, Swanston JS, Casas AM, Moralejo MA, Ubieto A, Lara I, Pérez-Vendrell AM, Romagosa I (1999) A mutant induced in the malting barley cv Triumph with reduced dormancy and ABA response. Theor Appl Genet 98:347–355

    Article  CAS  Google Scholar 

  • Morris CF, Moffatt JM, Sears RG, Paulsen GM (1989) Seed dormancy and responses of caryopses, embryos, and calli to abscisic acid in wheat. Plant Physiol 90:643–647

    Article  PubMed  CAS  Google Scholar 

  • Munkvold JD, Tanaka J, Benscher D, Sorrells ME (2009) Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet 119(7):1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23:3215–3229

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Nyachiro JM, Clarke FR, DePauw RM, Knox RE, Armstrong KC (2002a) The effects of cis-trans ABA on embryo germination and seed dormancy in wheat. Euphytica 126:129–133

    Article  CAS  Google Scholar 

  • Nyachiro JM, Clarke FR, DePauw RM, Knox RE, Armstrong KC (2002b) Temperature effects on seed germination and expression of seed dormancy in wheat. Euphytica 126:123–127

    Article  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensible for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    Article  PubMed  CAS  Google Scholar 

  • Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T-fF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu J-K, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed  CAS  Google Scholar 

  • Rikiishi K, Maekawa M (2010) Characterization of a novel wheat (Triticum aestivum L.) mutant with reduced seed dormancy. J Cereal Sci 51:292–298

    Article  CAS  Google Scholar 

  • Roy JK, Prasad M, Varshney RK, Balyan HS, Blake TK, Dhaliwal HS, Singh H, Edwards KJ, Gupta PK (1999) Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor Appl Genet 99:336–340

    Article  Google Scholar 

  • Schramm EC, Abellera JC, Strader LC, Campbell KG, Steber CM (2010) Isolation of ABA-responsive mutants in allohexaploid bread wheat (Triticum aestivum L.): drawing connections to grain dormancy, preharvest sprouting, and drought tolerance. Plant Sci 179:620–629

    Article  CAS  Google Scholar 

  • Schramm EC, Nelson SK, Steber CM (2012) Wheat ABA-insensitive mutants result in reduced grain dormancy. Euphytica 188:35–49

    Google Scholar 

  • Singh R, Matus-Cádiz M, Båga M, Hucl P, Chibbar RN (2010) Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica 174:391–408

    Article  CAS  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  PubMed  CAS  Google Scholar 

  • Torada A, Amano Y (2002) Effect of seed coat color on seed dormancy in different environments. Euphytica 126:99–105

    Article  CAS  Google Scholar 

  • Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115

    Article  PubMed  Google Scholar 

  • Utsugi S, Nakamura S, Noda K, Maekawa M (2008) Structural and functional properties of Viviparous1 genes in dormant wheat. Genes Genet Syst 83:153–166

    Article  PubMed  CAS  Google Scholar 

  • Visser K, Vissers APA, Cagirgan MI, Kijne JW, Wang M (1996) Rapid germination of a barley mutant is correlated with a rapid turnover of abscisic acid outside the embryo. Plant Physiol 111:1127–1133

    PubMed  CAS  Google Scholar 

  • Walker-Simmons M (1987) ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol 84:61–66

    Article  PubMed  CAS  Google Scholar 

  • Warner RL, Kudrna DA, Spaeth SC, Jones SS (2000) Dormancy in white-grain mutants of Chinese Spring wheat (Triticum aestivum L.). Seed Sci Res 10:51–60

    Google Scholar 

  • Yan C, Shen H, Li Q, He Z (2006) A novel ABA-supersensitive mutant in Arabidopsis defines a genetic locus that confers tolerance to xerothermic stress. Planta 224:889–899

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Ma YZ, Xu ZS, Chen X, He ZH, Yu Z, Wilkinson M, Jones HD, Shewry PR, Xia LQ (2007) Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J Exp Bot 58:2863–2871

    Article  PubMed  CAS  Google Scholar 

  • Zanetti S, Winzeler M, Keller B, Messmer M (2000) Genetic analysis of pre-harvest sprouting in a wheat × spelt cross. Crop Sci 40:1406–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to S. Abrams for providing (+)-ABA, to R. Parveen and E. Getzin for expert assistance, and to K. Garland-Campbell for advice and assistance. The authors wish to thank members of the Campbell and Steber labs for helpful comments on the research and manuscript. This work was funded by an NIH protein biotechnology training grant (to ECS), by the Washington Grain Alliance (to CMS), and by USDA CSREES grant 2005-01099 (to C.M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille M. Steber.

Additional information

Communicated by R. Visser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, E.C., Nelson, S.K., Kidwell, K.K. et al. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’. Theor Appl Genet 126, 791–803 (2013). https://doi.org/10.1007/s00122-012-2018-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-2018-0

Keywords

Navigation