Skip to main content
Log in

Philosophy and practice of variety-independent gene transfer into recalcitrant crops

  • Somatic Cell Genetics/Genetic Transformation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Commercialization and marketing of agricultural products derived from recombinant DNA technologies is now becoming a reality. Genetically engineered tomatoes are poised to appear in supermarket shelves in the United States sometime next year, with other crops, including cotton, maize, soybean, rapeseed, potatoes, cucurbids, raspberries and others, scheduled for release 1 to 2 yr later (Hamilton and Ellis, 1992). One of the major breakthroughs responsible for the rapid creation of commercializable products has been the development of gene transfer methods capable of introducing foreign DNA into elite germplasm. This review examines some of the principles and applications of such gene transfer technologies in relation to conventional alternatives that are limited by cell culture, host, and genotype. Advantages and disadvantages of various gene transfer methods will be discussed. Special emphasis will be given to particle bombardment, as methods based on this technology paved the way for the engineering of a number of important agronomic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldes, R.; Moos, M.; Geider, K. Transformation of soybean protoplasts from permanent suspension cultures by cocultivation with cells ofAgrobacterium tumefaciens. Plant Mol. Biol. 9:135–145; 1987.

    Article  CAS  Google Scholar 

  • Binns, A. N. Cell biology ofAgrobacterium infection and transformation of plants. Ann. Rev. Microbiol. 42:575–606; 1988.

    Article  CAS  Google Scholar 

  • Borlaug, N. E. Plant breeding goals and strategies for the 80s. In: Evans, D. A.; Sharp, W. R.; Ammirato, P. V., eds. Handbook of plant cell culture, vol. 4. New York: MacMillan Publishing Co.; 1984:3⅛1.

    Google Scholar 

  • Brar, G. S.; Cohen, B. A.; Vick, C. L. Germline transformation of peanut (Arachis hypogaea L.) utilizing electric discharge particle acceleration (ACCELL™) technology, vol. 23. Norfolk, VA: American Peanut Research and Education Society; 1992.

    Google Scholar 

  • Chee, P. P.; Fober, K. A.; Slightom, J. L. Transformation of soybean (Glycine max) by infecting germinating seeds withAgrobacterium tumefaciens. Plant Physiol. 91:1212–1218; 1989.

    PubMed  CAS  Google Scholar 

  • Christou, P.; Murphy, J. E.; Swain, W. F. Stable transformation of soybean by electroporation and root formation from transformed callus. Proc. Natl. Acad. Sci. USA 84:3962–3966; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P.; McCabe, D. E.; Swain, W. F. Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol. 87:671–674; 1988.

    PubMed  CAS  Google Scholar 

  • Christou, P.; Swain, W. F.; Yang, N-S., et al. Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Natl. Acad. Sci. USA 86:7500–7504; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P. Morphological description of transgenic soybean chimeras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Ann. Bot. (Lond) 66:379–386; 1990.

    CAS  Google Scholar 

  • Christou, P.; Swain, W. F. Cotransformation frequencies of foreign genes in soybean cell cultures. Theor. Appl. Genet. 79:337–341; 1990.

    Article  CAS  Google Scholar 

  • Christou, P.; McCabe, D. E.; Martinell, B. J., et al. Soybean genetic engineering—commercial production of transgenic plants. Trends Biotech. 8:145–151; 1990.

    Article  CAS  Google Scholar 

  • Christou, P.; Ford, T. L.; Kofron, T. M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9:957–962; 1991.

    Article  Google Scholar 

  • Christou, P. Genetic transformation of crop plants using microprojectile bombardment. Plant J. 2:275–281; 1992.

    Article  CAS  Google Scholar 

  • Christou, P.; McCabe, D. E. Prediction of germline transformation events in chimeric R0 transgenic soybean plantlets using tissue specific expression patterns. Plant J. 2:283–290; 1992.

    Article  CAS  Google Scholar 

  • Christou, P.; Ford, T. L.; Kofron, M. The development of a variety-independent gene transfer method for rice. Trends Biotech. 10:239–246; 1992.

    Article  Google Scholar 

  • Datta, S. K.; Peterhans, A.; Datta, K., et al. Genetically engineered fertile indica-rice recovered from protoplasts. Bio/Technology 8:736–740; 1990.

    Article  CAS  Google Scholar 

  • Datta, K.; Potrykus, I.; Datta, S. K. Efficient fertile plant regeneration from protoplasts of the indica rice breeding line IR72. Plant Cell Rep. 11:229–233; 1992.

    Article  Google Scholar 

  • Dekeyser, R. A.; Claes, B.; De Rycke, R. M. U., et al. Transient gene expression in intact and organized rice tissues. Plant Cell 2:591–602; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Dhir, S. K.; Dhir, S.; Savka, M. A., et al. Regeneration of transgenic soybean (Glycine max) plants from electroporated protoplasts. Plant Physiol. 99:81–88; 1992.

    PubMed  CAS  Google Scholar 

  • Finer, J. J.; McMullen, M. D. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep. 8:586–589; 1990.

    Article  Google Scholar 

  • Finer, J. J.; McMullen, M. D. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. 27:175–182; 1991.

    Article  Google Scholar 

  • Firoozabady, E.; DeBoer, D. L.; Merlo, D. J., et al. Transformation of cotton (Gossypium hirsutum L.) byAgrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol. Biol. 10:105–116; 1987.

    Article  CAS  Google Scholar 

  • Fromm, M.; Taylor, L. P.; Walbot, V. Expression of genes electroporated into monocot and dicot plant cells. Proc. Natl. Acad. Sci. USA 82:5824–5828; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M. E.; Morrish, F.; Armstrong, C., et al. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–844; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. L., et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, J. O’C.; Ellis, E. A storm is breaking down on the farm. Business Week December 4:98–101; 1992.

    Google Scholar 

  • Hayashimoto, A.; Li, Z.; Murai, N. A PEG-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiol. 93:857–863; 1990.

    PubMed  CAS  Google Scholar 

  • Hinchee, M. A. W.; Connor-Ward, D. V.; Newell, C. A., et al. Production of transgenic soybean plants usingAgrobacterium-mediated DNA transfer. Bio/Technology. 6:915–922; 1988.

    Article  CAS  Google Scholar 

  • Leemans, J. Genetic engineering for fertility control. J. Cell. Biochem. (Supple 16F):203; 1992.

  • Lianzheng, W.; Guangchu, Y.; Jiaofen, L., et al. A study on tumor formation of soybean and gene transfer. Sci. Sin. B. 27:391–397; 1984.

    Google Scholar 

  • Lin, W.; Odell, J. T.; Schreiner, R. M. Soybean protoplast culture and direct gene uptake and expression by cultured soybean protoplasts. Plant Physiol. 84:856–861; 1987.

    PubMed  CAS  Google Scholar 

  • Liu, B-L.; Yue, S-X.; Hu, N-B., et al. Transfer of the atrazine-resistant gene of black nightshade to soybean chloroplast genome and its expression in transgenic plants. Science in China, Series B. 33:444–452; 1990.

    CAS  Google Scholar 

  • McCabe, D. E.; Swain, W. F.; Martinell, B. J., et al. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926; 1988.

    Article  Google Scholar 

  • McCabe, D. E.; Martinell, B. J. Particle gun transformation applied to cotton. In: Hallick, R. B., ed. Molecular biology of plant growth and development. Tucson: University of Arizona Press; 1991.

    Google Scholar 

  • McCabe, D. E.; Martinell, B. J. Transformation of elite cotton varieties using particle bombardment. Bio/Technology 11:596–598; 1993.

    Article  Google Scholar 

  • McCabe, D. E.; Christou, P. Direct DNA transfer electric discharge particle acceleration (ACCELL® technology). Plant Cell Tissue Organ Cult. In press; 1993.

  • McCown, B. H.; McCabe, D. E.; Russell, D. R., et al. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep. 9:590–594; 1991.

    Article  CAS  Google Scholar 

  • Morikawa, H.; Yamada, Y. Capillary microinjection into protoplasts and intranuclear localization of injected materials. Plant Cell Physiol. 26:229–236; 1985.

    CAS  Google Scholar 

  • Neuhaus, G.; Spangenberg, G.; Scheid, O. M., et al. Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor. Appl. Genet. 70:30–36; 1987.

    Google Scholar 

  • Negrutiu, I.; Shillito, R.; Potrykus, I., et al. Hybrid genes in the analysis of transformation conditions. Setting up a simple method for direct gene transfer to plant protoplasts. Plant Mol. Biol. 8:363–373; 1987.

    Article  CAS  Google Scholar 

  • Owens, L. D.; Cress, D. E. Genotypic variability of soybean response toAgrobacterium strains harboring the Ti or Ri plasmids. Plant Physiol. 77:87–94; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Parrott, W. A.; Hoffman, L. M.; Hildebrand, D. F., et al. Recovery of primary transformants of soybean. Plant Cell Rep. 7:615–617; 1989.

    CAS  Google Scholar 

  • Potrykus, I. Gene transfer to cereals. An assessment. Bio/Technology 8:535–542; 1990.

    Article  CAS  Google Scholar 

  • Potrykus, I. Gene transfer to plants: assessment and perspectives. Physiol. Plant. 79:125–134; 1990.

    Article  CAS  Google Scholar 

  • Rhodes, C. A.; Pierce, D. A.; Mettler, I. J., et al. Genetically transformed maize plants from protoplasts. Science 240:204–207; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Russell, D. R.; Wallace, K. M.; Bathe, J. H., et al. Stable transformation ofPhaseolus vulgaris via electric discharge-mediated particle acceleration. Plant Cell Rep. 12:165–169; 1993.

    Article  CAS  Google Scholar 

  • Sanford, J. C. The biolistic process. Trends Biotech. 6:299–302; 1988.

    Article  CAS  Google Scholar 

  • Sanford, J. C. Biolistic plant transformation. Physiol. Plant. 79:206–209; 1990.

    Article  CAS  Google Scholar 

  • Serres, R.; Stang, E.; McCabe, D., et al. Gene transfer using electric discharge particle bombardment and recovery of transformed cranberry plants. J. Am. Soc. Hortic. Sci. 117:174–180; 1992.

    CAS  Google Scholar 

  • Shimamoto, K.; Teda, R.; Izawa, T., et al. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338:274–277; 1989.

    Article  CAS  Google Scholar 

  • Swaminathan, M. S. Biotechnology research and third world agriculture. Science 218:967–972; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Tada, Y.; Sakamoto, M.; Fujimura, T. Efficient gene introduction into rice by electroporation and analysis of transgenic plants: use of electroporation buffer lacking chloride ions. Theor. Appl. Genet. 80:475–480; 1990.

    Article  CAS  Google Scholar 

  • Toriyama, K.; Arimoto, Y.; Uchimiya, H., et al. Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technology 6:1072–1074; 1988.

    Article  CAS  Google Scholar 

  • Umbeck, P.; Johnson, G.; Barton, K. A., et al. Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio/Technology 5:263–266; 1987.

    Article  CAS  Google Scholar 

  • Vasil, V.; Castillo, A. M.; Fromm, M. E., et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674; 1992.

    Article  CAS  Google Scholar 

  • Wu, R.; Kemmerer, E.; McElroy, D. Transformation and regeneration of important crop plants: rice as the model system for monocots. Gene manipulation in plant improvement. New York: Plenum Press; 1990:251–263.

    Google Scholar 

  • Zhang, H. M.; Yang, H.; Rech, E. L., et al. Transgenic rice plants produced by electroporation mediated plasmid uptake into protoplasts. Plant Cell Rep. 7:379–383; 1988.

    CAS  Google Scholar 

  • Zhou, J. H.; Atherly, A. G.In situ detection of transposition of the maize controlling element (Ac) in transgenic soybean tissues. Plant Cell Rep. 8:542–545; 1990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented in the Session-in-Depth New Approaches to Plant transformation at the 1992 World Congress on Cell and Tissue Culture, Washington, DC, June 20–25, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christou, P. Philosophy and practice of variety-independent gene transfer into recalcitrant crops. In Vitro Cell Dev Biol - Plant 29, 119–124 (1993). https://doi.org/10.1007/BF02632282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632282

Key words

Navigation