Skip to main content
Log in

Solidification of Al Alloys Under Electromagnetic Pulses and Characterization of the 3D Microstructures Using Synchrotron X-ray Tomography

  • Symposium: Advances in Solidification of Metallic Alloys under External Fields
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.C. Flemings: Solidification Processing, MeGraw-Hill, New York, 1974.

    Google Scholar 

  2. J.A. Dantzig and M. Rappaz: Solidification, 1st ed., Taylor and Francis Group, LLC, Boca Raton, FL, 2009.

    Book  Google Scholar 

  3. J.A. Wert, N.E. Paton, C.H. Hamilton, and M.W. Mahoney: Metall. Trans. A, vol. 12A, 1981, pp. 1267–76.

    Article  Google Scholar 

  4. E.O. Hall: Proc. Phys. Soc. Sect. B, vol. 64, 1951, 747–53.

    Article  Google Scholar 

  5. M. Johnsson, L. Backerud, and G.K. Sigworth: Metall. Trans. A, vol. 24, 1993, pp. 481–91.

    Article  Google Scholar 

  6. G.P. Jones and J. Pearson: Metall. Trans. B, vol. 7B, 1976, pp. 223–234.

    Article  Google Scholar 

  7. C. Song, Q. Han, and Q. Zhai: China Foundry, vol. 6, 2009, pp. 93–103.

    Google Scholar 

  8. S. Tamirisakandala, R.B. Bhat, J.S. Tiley, and D.B. Miracle: Scripta Mater., vol. 53, 2005, pp. 1421–26.

    Article  Google Scholar 

  9. M. Guo and H. Suito: ISIJ Int., vol. 39, 1999, pp. 722–29.

    Article  Google Scholar 

  10. P. Koltun: Prog. Nat. Sci. Mater. Int., vol. 20, 2010, pp. 16–29.

    Article  Google Scholar 

  11. M. Garnier: ISIJ Int., vol. 30, 1990, pp. 1–7.

    Article  Google Scholar 

  12. G.I. Eskin and D.G. Eskin: Ultrasonic Grain Refinement, Ultrasonic Treatment of Light Alloy Melts, 2nd ed., CRC Press, Boca Raton, FL, 2014, pp. 129–170.

    Google Scholar 

  13. L. Li, J.H. Ma, C.J. Song, Z.J. Li, Y.L. Gao, and Q. Zhai: J. Iron Steel Res. Int., vol. 16, 2009, pp. 7–12.

    Article  Google Scholar 

  14. S. Eckert, P.A. Nikrityuk, D. RaBiger, K. Eckert, and G. Gerbeth: Metall. Mater. Trans. Bm vol. 38B, 2007, pp. 977–988.

    Article  Google Scholar 

  15. Y. Du, Y. Lu, T. Wang, T. Li, and G. Zhang: Proced. Eng., vol. 27, 2012, pp. 1129–34.

    Article  Google Scholar 

  16. S.H. Hanhn, Y. Sakai, T. Tsukada, M. Hozawa, N. Imaishi, and S. Kitagawa: Metall. Mater. Trans. B, vol. 29B, 1998, pp. 223–28.

    Article  Google Scholar 

  17. S. Asai: Sci. Technol. Adv. Mater., vol. 1, 2000, pp. 191–200.

    Article  Google Scholar 

  18. T. Campanella, C. Charbon, and M. Rappaz: Metall. Mater. Trans. A, vol. 35A, 2004, pp. 3201–10.

    Article  Google Scholar 

  19. M.J. Li, T. Tamura, N. Omura, and K. Miwa: Trans. Nonferrous Metals Soc. China, vol. 20, 2010, pp. 1192–98.

    Article  Google Scholar 

  20. Q. Li, C. Song, H. Li, and Q. Zhai: Mater. Sci. Eng., A, vol. 466, 2007, pp. 101–05.

    Article  Google Scholar 

  21. X. Li, Y. Fautrelle, K. Zaidat, A. Gagnoud, Z. Ren, R. Moreau, Y. Zhang, and C. Esling: J. Cryst. Growth, vol. 312, 2010, pp. 267–272.

    Article  Google Scholar 

  22. W. Dai and X. Wang: Mater. Trans., vol. 51, 2010, pp. 892–95.

    Article  Google Scholar 

  23. Z. Shu-cai, L. Hua-ji, R. Jin-song, R. Zheng-de, Z. Jie-xin, and Y. Zhi-li: China Foundry, vol. 4, 2007, pp. 198–201.

    Google Scholar 

  24. Z.X. Yin, Y.Y. Gong, B. Li, Y.F. Cheng, D. Liang, and Q. Zhai: J. Mater. Process. Technol., vol. 212, 2012, pp. 2629–34.

    Article  Google Scholar 

  25. Y.J. Zhang, G.J. Chen, and C.L. Tang: J. Shanghai Jiaotong Univ. (Sci.), vol. 17, 2012, pp. 282–85.

    Article  Google Scholar 

  26. N. Pei, Y.Y. Gong, R. Li, Z. Xia, and Q. Zhai: China Foundry, vol. 8, 2011, pp. 47–50.

    Google Scholar 

  27. E.G. Bakhoum: J. Renew. Sustain. Energy, vol. 4, 2012, 1–13.

    Article  Google Scholar 

  28. S. Dan and L. Ning: J. Power Energy Eng., vol. 2, 2014, pp. 579–585.

    Article  Google Scholar 

  29. I. Quintana, Z. Azpilgain, D. Pardo, and I. Hurtado: The COMSOL Conference Stuttgart, 2011, pp. 1–4.

  30. E. Basham, Z. Yang, and W. Liu: IEEE Trans. Biomed. Circuits Syst., vol. 54, 2008, pp. 1–12.

    Google Scholar 

  31. S. Bartkevičius and J. Novickij: Meas. Sci. Rev., vol. 7, 2007, 11–14.

    Google Scholar 

  32. D. Bernard, Ø. Nielsen, L. Salvoc, and P. Cloetens: Mater. Sci. Eng. A, vol. 392, 2005, pp. 112–20.

    Article  Google Scholar 

  33. C.Y. Ho, M.W. Ackerman, K.Y. Wu, T.N. Havill, R.H. Bogaard, R.A. Matula, S.G. Oh, and H.M. James: J. Phys. Chem. Ref. Data, vol. 12, 1983, 183–322.

    Article  Google Scholar 

  34. Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, S. Eckert, B. Willers, and K. Eigenfeld: Metall. Mater. Trans. A, vol. 39A, 2008, 63–68.

    Google Scholar 

  35. N.Y. Konstantinova, P.S. Popel, and D.A. Yagodin: High Temp., vol. 47, 2009, 336–41.

    Article  Google Scholar 

  36. Robson Scientific: Technical Data. http://www.robsonscientific.co.uk/technical-data. Accessed 12 Oct 2014.

  37. S.D. Pawar, P. Murugavel, and D.M. Lal: J. Geophys. Res. Atmos., vol. 114, 2009, p. D02205.

    Google Scholar 

  38. P. Guerrier and J.H. Hattel: International Conference on Advanced Manufacturing Engineering and Technologies, Stockholm, Sweden, 2013, vol. 2, pp. 35–45.

  39. A. Ashton, J. Aishima, M. Basham, P. Chang, B. El Kassaby, J. Filik, M. Gerring, K. Levik, I. Sikharulidze, and M. Webber: ZENODO. zenodo.14084, 2014.

  40. M. Basham, J. Filik, M.T. Wharmby, P.C.Y. Chang, B.E. Kassaby, M. Gerring, and A.W. Ashton: J. Synchrotron Radiat. Publ., 2015, DOI:10.1107/S1600577515002283.

  41. G.N. Ramachandran and A.V. Lakshminarayanan: Proc. Natl. Acad. Sci. USA, vol. 68, 1971, pp. 2236–40.

    Article  Google Scholar 

  42. S. Titarenko, P.J. Withers, and A. Yagola: Appl. Math. Lett., vol. 23, 2010, pp. 1489–95.

    Article  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge Diamond Light Source for the award of synchrotron X-ray beam time on Beamline I13-2 under the proposal No. MT9974. The financial supports for this research from the Royal Thai Government PhD Studentship (for T. Manuwong), the joint University of Hull and Chinese Scholarship Council (UoH-CSC) PhD studentship (for W. Zhang), and the Royal Society Industry Fellowship (for J. Mi) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Mi.

Additional information

Manuscript submitted February 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuwong, T., Zhang, W., Kazinczi, P.L. et al. Solidification of Al Alloys Under Electromagnetic Pulses and Characterization of the 3D Microstructures Using Synchrotron X-ray Tomography. Metall Mater Trans A 46, 2908–2915 (2015). https://doi.org/10.1007/s11661-015-2874-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2874-8

Keywords

Navigation