Skip to main content
Log in

Grain refinement induced by electromagnetic stirring: A dendrite fragmentation criterion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of electromagnetic stirring (EMS) on grain refinement has been studied for two copper-base alloys (Cu-1 wt pct Ni-1 wt pct Pb-0.2 wt pct P and Cu-4 wt pct Zn-4 wt pct Sn-4 wt pct Pb) solidified in a Bridgman furnace. Metallographic inspection of the specimens, temperature measurements during solidification, and numerical simulations performed with CALCOSOFT revealed that the efficiency of EMS is strongly dependent upon the penetration of the liquid in the mushy zone and therefore upon the position of the convection vortices with respect to the liquidus front. In particular, the low-concentration alloy could be grain refined only at high power and when the coil was moved close to the liquidus front. These results were analyzed on the basis of a dendrite fragmentation criterion similar to Flemings’ criterion for local remelting of the mushy zone. Considering that the component of the fluid flow velocity along the thermal gradient, \(u_{l,G} = \frac{{u_e \cdot \nabla T}}{{\left\| {\nabla T} \right\|}}\), must be larger than the casting speed, V c , dendrite fragmentation occurs if

$$C_R \approx \frac{1}{{V_c }}\frac{K}{{g_l \cdot \mu }}\frac{{B_0^2 }}{{\mu _0 d_{ind} }} > 1$$

at some depth within the mushy zone where dendrite arms are sufficiently developed, typically 8 λ 2, where λ 2 is the final secondary dendrite arm spacing, K is the permeability of the mushy zone, g l is the volume fraction of liquid, μ is the dynamic viscosity, B 0 is the magnetic field, μ 0 is the permeability of vacuum, and d ind is the distance between the inductor and the liquidus front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Campbell: Castings, Butterworth Heinemann, Oxford, United Kingdom, 1991.

    Google Scholar 

  2. K. Nakano: Continuous Casting of Copper and Copper Alloys, Shieffield, United Kingdom, 1987, p. 413.

  3. B. Hu and H. Li: Mater. Processing Technol., 1998, vol. 74, p. 56.

    Article  Google Scholar 

  4. A.K. Dahle and L. Arnberg: Acta Mater., 1997, vol. 45, p. 547.

    Article  CAS  Google Scholar 

  5. R. Trivedi and W. Kurz: Int. Mater. Rev., 1994, vol. 39, p. 49.

    CAS  Google Scholar 

  6. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, p. 75.

    Article  CAS  Google Scholar 

  7. C. Vivès: Metall. Trans. B, 1989, vol. 20B, p. 623.

    Google Scholar 

  8. C.J. Paradies, R.N. Smith, and M.E. Glicksman: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 875–83.

    Article  CAS  Google Scholar 

  9. A. Hellawell, S. Liu, and S.Z. Lu: JOM, 1997, Mar., p. 18.

  10. Y. Fautrelle: Fluid Flows Induced by Alternating Magnetic Fields, Kluwer Academic Publishers, IUATM Symposium, Riga, Latvia, 1989.

  11. S.N. Tewari, R. Shah, and H. Song: Metall. Mater. Trans. A, 1994, vol. 25A, p. 1535.

    CAS  Google Scholar 

  12. T. Sato, W. Kurz, and K. Ikawa: Trans. Jpn. Inst. Met., 1987, vol. 28, p. 1012.

    CAS  Google Scholar 

  13. K.A. Jackson, J.D. Hunt, D.R. Uhlmann, and T.P. Seward: Trans. Met. Soc. AIME, 1966, vol. 236, p. 149.

    CAS  Google Scholar 

  14. S. Liu, S.-Z. Lu, and A. Hellawell: J. Cryst. Growth, 2002, vol. 234, p. 740.

    Article  CAS  Google Scholar 

  15. B. Appolaire, V. Albert, H. Combeau, and G. Lesoult: Acta Mater., 1998, vol. 46, p. 5851.

    Article  CAS  Google Scholar 

  16. Q. Li and C. Beckermann: J. Cryst. Growth, 2002, vol. 236, p. 432.

    Google Scholar 

  17. G.M. Meseha: Wire J. Int., 1997, vol. 60.

  18. M.C. Flemings: Solidification Processing, 1974.

  19. T. Campanella, C. Charbon, and M. Rappaz: Scripta Mater., 2003, vol. 49, p. 1029.

    Article  CAS  Google Scholar 

  20. G. Reiter, V. Maronnier, C. Sommitsch, M. Gäumann, W. Schützenhöfer, and R. Schneider: LMPC 2003, Proc. Int. Symp. on Liquid Metal Processing and Casting, 2003.

  21. P. Desnain, F. Durand, Y. Fautrelle, D. Bloch, J.L. Meyer, and J.P. Riquet: Light Metals 1988, The Metallurgical Society, Inc., Warrendale, PA, 1988, p. 487.

    Google Scholar 

  22. M. Rappaz, M. Bellet, and M. Deville: Numerical Modeling in Materials Science and Engineering, Springer-Verlag Berlin, 2003.

    Google Scholar 

  23. D.R. Poirier: Metall. Trans., 1987, vol. 18B, pp. 245–56.

    CAS  Google Scholar 

  24. T. Campanella, C. Charbon, and M. Rappaz: EPFL Lausanne, unpublished research, 2003.

  25. R. Moreau: Progr. Cryst. Growth Characterization Mater., 1999, vol. 161.

  26. A. Hellawell, J.R. Sarazin, and R.S. Steube: Phil. Trans. R. Soc. London A, 1993, vol. 345, p. 507.

    CAS  Google Scholar 

  27. H. Esaka: Ph.D. Thesis #615, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1986.

    Google Scholar 

  28. T. Campanella: Ph.D. Thesis #2818, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campanella, T., Charbon, C. & Rappaz, M. Grain refinement induced by electromagnetic stirring: A dendrite fragmentation criterion. Metall Mater Trans A 35, 3201–3210 (2004). https://doi.org/10.1007/s11661-004-0064-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0064-1

Keywords

Navigation