Skip to main content

Advertisement

Log in

Nucleation and Grain Refinement of 7A04 Aluminum Alloy Under a Low-Power Electromagnetic Pulse

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of a low-power electromagnetic pulse on the grain size and cooling curve of high-strength aluminum alloy 7A04 were investigated for various pulse duty cycles. This electromagnetic pulse treatment was found to effectively produce fine grains with globular crystals and a uniform microstructure for pulse duty cycles between 20 and 40%. The key factors that affected grain refinement under the electromagnetic pulse included the electromagnetic energy and the conversion frequency between \( \varvec{B} \) and \( \varvec{E} \). The nucleation rate increased as the nucleation period was extended. A new kinetic condition of magnetic nucleation was explored by decreasing the critical Gibbs free energy in the electromagnetic pulse, which was more sensitive under low undercooling. In addition, the crystal orientation was controlled in such a solidification environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.J. Li, W.Z. Tao, and Y.S. Yang, Grain Refinement of Al–Cu Alloy in Low Voltage Pulsed Magnetic Field, J. Mater. Process Tech., 2012, 212(4), p 903–909

    Article  Google Scholar 

  2. G.J. Chen, Y.J. Zhang, and Y.S. Yang, Modelling the Unsteady Melt Flow Under a Pulsed Magnetic Field, Chin. Phys. B, 2013, 22(12), p 333–337

    Google Scholar 

  3. E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, and P.S. Grant, A Synchrotron X-ray Radiography Study of Dendrite Fragmentation Induced by a Pulsed Electromagnetic Field in an Al–15Cu Alloy, Acta Mater., 2014, 70, p 228–239

    Article  Google Scholar 

  4. M. Nakada, Y. Shiohara, and M.C. Flemings, Modification of Solidification Structures by Pulse Electric Discharging, ISIJ Int., 1990, 30(1), p 27–33

    Article  Google Scholar 

  5. D. Liang, Z.Y. Liang, Q.J. Zhai, G. Wang, and D.H. StJohn, Nucleation and Grain Formation of Pure Al Under Pulsed Magneto-Oscillation Treatment, Mater. Lett., 2014, 130(3), p 48–50

    Article  Google Scholar 

  6. A. Hellawell, S. Liu, and S.Z. Lu, Dendrite Fragmentation and the Effects of Fluid Flow in Castings, JOM, 1997, 49(3), p 18–20

    Article  Google Scholar 

  7. B. Wang, Y.S. Yang, and M.L. Sun, Microstructure Refinement of AZ31 Alloy Solidified with Pulsed Magnetic Field, Trans. Nonferrous Met. Soc. China, 2010, 20(9), p 1685–1690

    Article  Google Scholar 

  8. Y.L. Gao, Q.S. Li, Y.Y. Gong, and Q.J. Zhai, Comparative Study on Structural Transformation of Low-Melting Pure Al and High-Melting Stainless Steel Under External Pulsed Magnetic Field, Mater. Lett., 2007, 61(18), p 4011–4014

    Article  Google Scholar 

  9. J.P. Barnak, A.F. Sprecher, and H. Conrad, Colony (grain) Size Reduction in Eutectic Pb–Sn Castings by Electroplusing, Scr. Metal. Mater., 1995, 32(6), p 879–884

    Article  Google Scholar 

  10. Q. Li, C. Song, H. Li, and Q. Zhai, Effect of Pulsed Magnetic Field on Microstructure of 1Cr18Ni9Ti Austenitic Stainless Steel, Mater. Sci. Eng. A, 2007, 466(1–2), p 101–105

    Article  Google Scholar 

  11. H. Fredriksson and U. Åkerlind, Materials processing during casting, Wiley, Hoboken, 2006

    Book  Google Scholar 

  12. D. Turnbull and J.C. Fisher, Rate of Nucleation in Condensed Systems, J. Chem. Phys., 1949, 17(1), p 71–73

    Article  Google Scholar 

  13. N. Iqbal, N.H. Dijk, V.W.J. Verhoeven, T. Hansen, L. Katgermann, and G.J. Kearley, Periodic Structural Fluctuations During the Solidification of Aluminum Alloys Studied by Neutron Diffraction, Mater. Sci. Eng. A, 2004, 367(1–2), p 82–88

    Article  Google Scholar 

  14. Y.Q. Wang, Z.X. Wang, X.G. Hu, J.K. Han, and H.J. Xing, Experimental Study and Parametric Analysis on the Stability Behavior of 7A04 High-Strength Aluminum Alloy Angle Columns Under Axial Compression, Thin Wall Struct, 2016, 108, p 305–320

    Article  Google Scholar 

  15. M.J. Li, T. Tamura, N. Omura, Y. Murakami, and S. Tada, Grain Refinement of AZCa912 Alloys Solidified by an Optimized Electromagnetic Stirring Technique, J. Mater. Process Tech., 2016, 235, p 114–120

    Article  Google Scholar 

  16. T. Takagi, K. Iwai, S. Asai, T. Takagi, K. Iwai, and S. Asai, Solidified Structure of Al Alloys by a Local Imposition of an Electromagnetic Oscillationg Force, ISIJ Int., 2003, 43(6), p 842–848

    Article  Google Scholar 

  17. I. Edry, V. Erukhimovitch, A. Shoihet, Y. Mordekovitz, N. Frage, and S. Hayun, Effect of Impurity Levels on the Structure of Solidified Aluminum Under Pulse Magneto-Oscillation (PMO), J. Mater. Sci., 2013, 48(24), p 8438–8442

    Article  Google Scholar 

  18. L. Hui, D. Feng, J. Wang, X. Bian, and G. Wang, Structural Studies of Clusters in Melt of FeAl Compound, J. Chem. Phys., 2001, 114(14), p 6413–6416

    Article  Google Scholar 

  19. J.Z. Wang, J.G. Qi, H.L. Du, and Z.B. Zhang, Heredity of Aluminum Melt Caused by Electric Pulse Modification (I), J. Iron. Steel Res. Int., 2007, 14(4), p 75–78

    Article  Google Scholar 

  20. H.D. Joo, S.U. Kim, Y.M. Koo, N.S. Shin, and J.K. Choi, An Effect of a Strong Magnetic Field on the Phase Transformation in Plain Carbon Steels, Metall. Mater. Trans. A, 2004, 35(6), p 1663–1668

    Article  Google Scholar 

  21. J. Pilling and A. Hellawell, Mechanical Deformation of Dendrites by Fluid Flow, Metall. Mater. Trans. A, 1996, 27(1), p 229–232

    Article  Google Scholar 

  22. G. Li, H. Wang, X. Yuan, and Y. Zhao, Microstructure of Nanometer Al2O3 Particles Reinforced Aluminum Matrix Composites Processed by High Pulsed Electromagnetic Field, Mater. Lett., 2013, 99, p 50–53

    Article  Google Scholar 

  23. J.K. Choi, H. Ohtsuka, Y. Xu, and W.Y. Choo, Effects of a Strong Magnetic Field on the Phase Stability of Plain Carbon Steels, Scripta Mater., 2000, 43(3), p 221–226

    Article  Google Scholar 

  24. P. Terzieff and R. Lück, Magnetic Investigations in Liquid Al–In, J. Alloy. Compd., 2003, 360(1–2), p 205–209

    Article  Google Scholar 

  25. E.A. Brandes, Smithells metals reference book, 6th ed., Butterworth & Co C Publishers Ltd, New York, 1983

    Google Scholar 

  26. M. Tahashi, K. Sassa, I. Hirabayashi, and S. Asai, Control of Crystal Orientation by Imposition of a High Magnetic Field in a Vapor-Deposition Process, Mater. Trans. JIM, 2000, 41(8), p 985–990

    Article  Google Scholar 

  27. T. Sugiyama, M. Tahashi, K. Sassa, and S. Asai, The Control of Crystal Orientation in Non-magnetic Metals by Imposition of a High Magnetic Field, ISIJ Int., 2003, 43(6), p 855–861

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (51 044 002) and the Scientific Research Project of Colleges and Universities in Inner Mongolia Autonomous Region (NJcxy08070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Q., Ma, Y., Xing, S. et al. Nucleation and Grain Refinement of 7A04 Aluminum Alloy Under a Low-Power Electromagnetic Pulse. J. of Materi Eng and Perform 27, 857–863 (2018). https://doi.org/10.1007/s11665-018-3128-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3128-x

Keywords

Navigation