Skip to main content
Log in

Effect of processing conditions on drop behavior in an electromagnetic levitator

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model, which can predict the electromagnetic and temperature fields and also the shape of a molten silicon drop, has been developed for the improvement and determination of the optimal processing conditions in an electromagnetic levitation (EML) device recently developed to accurately measure the thermophysical properties of molten silicon. As a result, it was found that there exists an unstable state in which the drop was squeezed and then might be collapsed due to the electromagnetic force acting on the sample’s surface. Also, the results suggest that the shape of the molten material is not necessarily a perfect sphere under the microgravity environment because of the electromagnetic force due to the heating coil current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A′:

magnetic vector potential

B′:

magnetic flux density

A φ :

dimensionless azimuthal component of vector potential, A φ ′/(μ0 Jref r 2ref )

Bo g :

Bond number, (ρgr 2ref )/γ

Bo m :

electromagnetic Bond number, (μ0 Jref r 3ref )/γ

B S :

dimensionless magnetic intensity tangential to the surface of molten sample, B S /(μ0 Jref rref)

f :

dimensionless radial distance, f′/rref

2H :

dimensionless mean curvature, 2Hrref

h :

dimensionless relative position between coils and sample, h′/rref

J :

dimensionless current density, J′/J′ ref

k :

dimensionless thermal conductivity, k′/k′ ref

N A :

dimensionless number defined by μ0 θ′ f σ′ ref r 2ref

N Q :

dimensionless number defined by (σref θ 2 f 20 J 2ref r 2ref )/(kref Tm)

n :

dimensionless normal direction, n′/r′ ref

Ra:

Radiation number, (εσref T 3 m rref)/kref

r :

dimensionless radial coordinate, r′/r′ ref

T :

dimensionless temperature, T′/T′ m

T′ m :

melting temperature of silicon

t′:

time

z :

dimensionless axial coordinate, z′/r′ ref

α :

dimensionless electric conductivity, σ′/σ′ ref

γ′:

surface tension

ε′:

emissivity

ϑ′:

polar angle

λ :

dimensionless reference pressure difference, (rref ΔP′)/γ

μ0 :

magnetic permeability

σ′:

electric conductivity

ρ′:

density

ω′:

angular frequency

C :

coil

a :

environment

f :

frequency

ref:

reference value

φ:

azimuthal component

′:

dimensional value

*:

complex conjugate

References

  1. O. Muck: German Patent No. 422,004, Oct. 30, 1923.

  2. S. Asai: Electromagnetic Processing of Materials, ISIJ, Nagoya, Japan, 1994.

    Google Scholar 

  3. Y. Bayazitoglu, P.V.R. Suryanarayana, and U.B. Sathuvalli: AIAA J. Thermophys. Heat Transfer, 1990, vol. 44, pp. 462–68.

    Google Scholar 

  4. J. Murphy and Y. Bayazitoglu: Numer. Heat Transfer Pt. A, 1992, vol. 22, pp. 10–120.

    Google Scholar 

  5. B.J. Keene, K.C. Mills, A. Kasama, A. Mclean, and W.A. Miller: Metall. Trans. B, 1986, vol. 17B, pp. 159–62.

    CAS  Google Scholar 

  6. Y. Bayazitoglu and P.V.R. Suryanarayana: AIAA J. Thermophys. Heat Transfer, 1989, vol. 43, pp. 351–53.

    Article  Google Scholar 

  7. I. Egry, G. Lohöfer, P. Neuhaus, and S. Saverland: Int. J. Thermophys., 1992, vol. 13, pp. 65–74.

    Article  CAS  Google Scholar 

  8. M. Przyborowski, T. Hibiya, M. Eguchi, and I. Egry: J. Crystal Growth, 1995, vol. 151, pp. 60–65.

    Article  CAS  Google Scholar 

  9. E. Gorges, L.M. Racz, A. Schillings, and I. Egry: Int. J. Thermophys., 1996, vol. 17, pp. 1163–72.

    Article  CAS  Google Scholar 

  10. G. Lohöfer, P. Neuhaus, and I. Egry: High Temperatures-High Pressures, 1991, vol. 23, pp. 333–42.

    Google Scholar 

  11. I. Egry, G. Jacobs, E. Schwartz, and J. Szekely: Int. J. Thermophys., 1996, vol. 75, pp. 1181–89.

    Article  Google Scholar 

  12. I. Egry and J. Szekely: Adv. Space Rec., 1991, vol. 11, pp. 263–66.

    Article  CAS  Google Scholar 

  13. E.C. Okress, D.M. Wroughton, G. Comenetz, P.H. Brace, and J.C.R. Kelly: J. Appl. Phys., 1952, vol. 23, pp. 545–52.

    Article  Google Scholar 

  14. G. Lohöfer: SIAM J. Appl. Math., 1989, vol. 49, pp. 567–81.

    Article  Google Scholar 

  15. Y. Bayazitoglu and U.B. Sathuvalli: IEEE Trans. Magn., 1993, vol. 29, pp. 88–97.

    Article  Google Scholar 

  16. U.B. Sathuvalli and Y. Bayazitoglu: Metall. Trans. B, 1993, vol. 24B, pp. 737–48.

    CAS  Google Scholar 

  17. N. El-Kaddah and J. Szekely: Metall. Trans. B, 1983, vol. 14B, pp. 401–10.

    CAS  Google Scholar 

  18. N. El-Kaddah and J. Szekely: Metall. Trans. B, 1984, vol. 15B, pp. 183–86.

    CAS  Google Scholar 

  19. A. Gagnoud and M. Garnier: IEEE Trans. Magn., 1985, vol. 21, pp. 1886–88.

    Article  Google Scholar 

  20. A. Gagnoud, J. Etay, and M. Garnier: J. Theor. Appl. Mech., 1986, vol. 5, pp. 911–34.

    Google Scholar 

  21. A. Gagnoud and I. Leclercq: IEEE Trans. Magn., 1988, vol. 24, pp. 256–58.

    Article  Google Scholar 

  22. J.-H. Zong, J. Szekely, and E. Schwartz: IEEE Trans. Magn., 1993, vol. 28, pp. 1833–42.

    Article  Google Scholar 

  23. A.J. Mestel: J. Fluid Mech., 1982, vol. 17, pp. 27–43.

    Article  Google Scholar 

  24. A.D. Sneyd and H.K. Moffatt: J. Fluid Mech., 1982, vol. 117, pp. 45–70.

    Article  CAS  Google Scholar 

  25. J.-H. Zong, B. Li, and J. Szekely: Acta Astronautica, 1992, vol. 26, pp. 435–49.

    Article  Google Scholar 

  26. J.-H. Zong, B. Li, and J. Szekely: Acta Astronautica, 1993, vol. 29, pp. 305–11.

    Article  Google Scholar 

  27. J.-H. Zong and J. Szekely: Acta Astronautica, 1993, vol. 29, pp. 371–78.

    Article  Google Scholar 

  28. P.V.R. Suryanarayana and Y. Bayazitoglu: Phys. Fluid A, 1991, vol. 3, pp. 967–77.

    Article  CAS  Google Scholar 

  29. A. Bratz and I. Egry: J. Fluid Mech., 1995, vol. 298, pp. 341–59.

    Article  Google Scholar 

  30. Y. Bayazitoglu, U.B.R. Sathuvalli, P.V.R. Suryanarayana, and G.F. Mitchell: Phys. Fluid, 1996, vol. 8, pp. 370–83.

    Article  CAS  Google Scholar 

  31. J. Shinohara, H. Ueno, S. Iwasaki, E. Nishizawa, H. Sakurai, K. Nogi, and S. Kitagawa: J. Soc. Microgravity Application, 1996, vol. 13, pp. 165–66.

    Google Scholar 

  32. T. Hibiya: J. Soc. Microgravity Application, 1996, vol. 13, pp. 5–8.

    Google Scholar 

  33. T. Miyoshi, M. Sumiya, and H. Omori: IEEE Trans. Magn., 1987, vol. 23, pp. 1827–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, S.H., Sakai, Y., Tsukada, T. et al. Effect of processing conditions on drop behavior in an electromagnetic levitator. Metall Mater Trans B 29, 223–228 (1998). https://doi.org/10.1007/s11663-998-0025-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0025-y

Keywords

Navigation