Skip to main content
Log in

The origin of Darwin hybrid tulips analyzed by flow cytometry, karyotype analyses and genomic in situ hybridization

  • Original Article
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Chromosome morphology was studied in diploid cultivars of Tulipa fosteriana and T. gesneriana (2n = 2x = 24) and triploid Darwin hybrids (2n = 3x = 36) developed from interspecific crosses of T. gesneriana and T. fosteriana. Chromosomes were arranged in the karyotype according to decreasing total length. Based on our karyotypic analysis, we propose that median chromosomes may serve as markers for diploid genotypes. Discriminant analysis with respect to total chromosome length and short arm length showed a significant difference between the size of the larger median chromosomes of T. gesneriana and T. fosteriana Comparison of median chromosome length in Darwin hybrid tulips showed that two larger chromosomes and one smaller chromosome were derived from T. gesneriana and T. fosteriana, respectively. This finding was clearly and unambiguously confirmed by simultaneous hybridization of differentially labeled genomic probes of T. fosteriana and T. gesneriana to metaphase chromosomes of the triploid cultivar ‘Yellow Dover’, thereby enabling us to distinguish between the 24 chromosomes derived from T. gesneriana and 12 chromosomes derived from T. fosteriana. Thus, genomic in situ hybridization and median chromosome analyses can be useful to identify the genome constitution of triploid Darwin hybrid tulips. In addition, their hybridity was readily verified by flow cytometry using vegetative tissue of Darwin hybrid tulips. Our results clarify the process of Tulipa cultivar formation and will be useful for interspecific hybridization breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (1968) Kruisingouderslijst tulpen. Koninklijke Algemeene Vereeniging voor Bloembollencultuur (KAVB). Haarlem

  • Barba-Gonzales R, Lokker AC, Lim KB, Ramanna MS, Van Tyul JM (2004) Use of 2n gametes for the production of sexual polyploids from sterile Oriental × Asiatic hybrids of lilies (Lilium). Theor Appl Genet 109:1125–1132

    Article  Google Scholar 

  • Bryan JE (2002) Bulbs. Timber Press, Inc. US

  • Chyi YS, Weeden NF (1984) Relative isozyme band intensities permit the identification of the 2n gamete parent of triploid apple cultivars. Hort Sci 19:818–819

    CAS  Google Scholar 

  • Doorenbos J (1954) Notes on the history of bulb breeding in the netherlands. Euphytica 3:1–11

    Article  Google Scholar 

  • Fernandez AM, Nakazaki T, Tanisaka T (1996) Development of diploid and triploid interspecific hybrids between Lilium longiflorum and L. concolor by ovary slice culture. Plant Breed 115:167–171

    Article  Google Scholar 

  • Filion WG (1974) Differential giemsa staining in plants. I. Banding patterns in three cultivars of Tulipa. Chromosoma 49:51–60

    Article  Google Scholar 

  • Fukui K, Shishido R, Kinoshita T (1997) Identification of the rice D-chromosomes by genomic in situ hybridization. Theor Appl Genet 95:1239–1245

    Article  CAS  Google Scholar 

  • Hair JF, Anderson RE Jr, Tatham RL, Grablowsky BJ (1984) Multivariate data analysis. Macmillan Publishing Co. US

  • Hasterok R, Jenkins G, Longdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490

    Article  CAS  Google Scholar 

  • Hasterok R, Draper J, Jenkins G (2004) Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv. Chromosome Res 12:397–403

    Article  PubMed  CAS  Google Scholar 

  • Hasterok R, Wolny E, Kulak S, Zdziechowicz A, Maluszynska J, Heneen WK (2005) Molecular cytogenetic analysis of Brassica rapa-Brassica oleracea var. alboglabra monosomic addition lines. Theor Appl Genet 111:196–205

    Article  PubMed  CAS  Google Scholar 

  • Heimburger M (1962) Comparison of chromosome size in species of Anemone and their hybrids. Chromosoma 13:329–340

    Article  Google Scholar 

  • Kagan-Zur V, Mizrahi Y, Zamir D, Navot N (1991) A tomato triploid hybrid whose double genome parent is the male. J Amer Soc Hort Sci 116:342–345

    Google Scholar 

  • Karlov GI, Khrustaleva LI, Lim KB, Van Tuyl JM (1999) Homoeologous recombination in 2n-gametes producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome 42:681–1999

    Article  Google Scholar 

  • Kato A (1997) An improved method for chromosome counting in maize. Biotech Histochem 72:249–252

    PubMed  CAS  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559

    Article  PubMed  CAS  Google Scholar 

  • Keller ERJ, Schubert I, Fuchs J, Meister A (1996) Interspecific crosses of onion with distant Allium species and characterization of the presumed hybrids by means of flow cytometry, karyotype analysis and genomic in situ hybridization. Theor Appl Genet 92:417–424

    Article  Google Scholar 

  • Kho YO, Baer J (1971) Incompatibility problems in species crosses of Tulips. Euphytica 20:30–35

    Article  Google Scholar 

  • Kisaka H, Kisaka M, Kanno A, Kameya T (1998) Intergeneric somatic hybridization of rice (Oriza sativa L.) and barley (Hordeum vulgarae L.) by protoplast fusion. Plant Cell Rep 17:362–367

    Article  CAS  Google Scholar 

  • Kitamura S, Inoue M, Ohimido N, Fukui K (1997) Identification of parental chromosomes in the interspecific hybrids of Nicotiana rustica L. × N. tabacum L. and N. gossei Domin × N. tabacum L., using genomic in situ hybridization. Breed Sci 47:67–70

    Google Scholar 

  • Kroon GH, Van Eijk JP (1977) Polyploidy in tulips (Tulipa L.). The occurrence of diploid gametes. Euphytica 26:63–66

    Article  Google Scholar 

  • Kuipers AGJ, Van Os DPM, de Jong JH, Ramanna MS (1997) Molecular cytogenetics of Alstroemeria: identification of parental genomes in interspecific hybrids and characterization of repetitive DNA families in constitutive heterochromatin. Chromosome Res 5:31–39

    Article  PubMed  CAS  Google Scholar 

  • Lefeber DW (1960) Raising and introducing new tulips. Daffodil and Tulip, Year Book, pp 16–24

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position of chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Li CB, Zhang DM, Ge S, Lu BR, Hong DY (2001) Identification of genome constitution of Oriza malampuzhaensis, O. minuta, and O. punctata by multicolour genomic in situ hybridization. Theor Appl Genet 103:204–211

    Article  CAS  Google Scholar 

  • Lim KB, Chung JD, Van Kronenburg BCE, Ramanna MS, de Jong JH, Van Tuyl JM (2000) Introgression of Lilium rubellum Baker chromosomes into L. longiflorum Thunb.: a genome painting study of the F1 hybrid, BC1 and BC2 progenies. Chromosome Res 8:119–125

    Article  PubMed  CAS  Google Scholar 

  • Lim KB, Wennekes J, de Jong JH, Jacobsen E, Van Tyul JM (2001a) Karyotype analysis of Lilium rubellum and Lilium longiflorum by chromosome banding and fluorescence in situ hybridization. Genome 44:911–918

    Article  CAS  Google Scholar 

  • Lim KB, Ramanna MS, de Jong JH, Jacobsen E, Van Tyul JM (2001b) Intermediate meiotic restitution (IMR): a novel type of meiotic nuclear restitution mechanism detected in interspecific lily hybrids by GISH. Theor Appl Genet 103:119–130

    Article  Google Scholar 

  • Lim KB, Ramanna MS, Van Tyul JM (2003) Homoeologous recombination in interspecific hybrids of Lilium. Korean J Breed 35:8–12

    Google Scholar 

  • Maluszynska J, Hasterok R (2005) Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Cytogenet Genome Res 109:310–314

    Article  PubMed  CAS  Google Scholar 

  • Marasek A, Hasterok R, Orlikowska T (2004a) The use of chromosomal markers linked with nucleoli organisers for F1 hybrid verification in Lilium. Acta Horticulturae 651:77–82

    CAS  Google Scholar 

  • Marasek A, Hasterok R, Wiejacha K, Orlikowska T (2004b) Determination by GISH and FISH of hybrid status in Lilium. Hereditas 140:1–7

    Article  Google Scholar 

  • Marasek A, Orlikowska T (2001) Distant lily hybrids identification based on chromosomal markers. Biotechnologia 3:243–248 (In Polish)

    Google Scholar 

  • Metwally EI, Haruon SA, El-Fadly GA (1996) Interspecific cross between Cucurbita pepo L. and Cucurbita martinenzii through in vitro embryo culture. Euphytica 90:1–7

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acid Res 8:4321–4325

    PubMed  CAS  Google Scholar 

  • Nakamura T, Kuwayama S, Tanaka S, Oomiya T, Saitou H, Nakano M (2005) Production of intergeneric hybrid plants between Sandersonia aurantiaca and Gloriosa rothschildiana via ovule culture (Colchicaceae). Euphytica 142:283–289

    Article  Google Scholar 

  • Nassar NMA, Vieira MA, Vieira C, Grattapaglia D (1998) A molecular and embryonic study of apomixis in cassava (Manihot esculenta Crantz). Euphytica 102:9–13

    Article  CAS  Google Scholar 

  • Noda S (1986) Cytogenetic behavior, chromosomal differentiations, and geographic distribution in Lilium lancifolium (Liliaceae). Plant Spec Biol 1:69–78

    Article  Google Scholar 

  • North C, Wills AB (1969) Interspecific hybrids of Lilium lankongense Franchet produced by embryo culture. Euphytica 18:430–434

    Article  Google Scholar 

  • Obata Y, Niimi Y, Nakano M, Okazaki K, Miyajima I (2000) Interspecific hybrids between Lilium nobillissimum and L. regale produced via ovules with placenta culture. Scientia Horticulturae 84:191–204

    Article  Google Scholar 

  • Okazaki K, Asano Y, Oosawa K (1994) Interspecific hybrids between Lilium ‘Oriental’ hybrid and L. ‘Asiatic’ hybrid produced by embryo culture with revised media. Breed Sci 44:59–64

    Google Scholar 

  • Okazaki K, Kurimoto K, Miyajima I, Enami A, Mizuochi H, Matsumoto Y, Ohya H (2005) Induction of 2n pollen in tulips by arresting the meiotic process with nitrous oxide gas. Euphytica 143:101–114

    Article  CAS  Google Scholar 

  • Ørgaard M, Jacobsen N, Heslop-Harrison JS (1995) The hybrid origin of two cultivars of Crocus (Iridaceae) analyzed by molecular cytogenetics including genomic southern and in situ Hybridization. Ann Bot 76:25–262

    Article  Google Scholar 

  • Ran Y, Murray BG, Hammett KRW (1999) Karyotype analysis of the genus Clivia by Giemsa and fluorochrome banding and in situ hybridization. Euphytica 106:139–147

    Article  Google Scholar 

  • Ran Y, Keith R, Hammett W, Murray BG (2001) Hybrid identification in Clivia (Amaryllidaceae) using chromosomes banding and genomic in situ hybridization. Ann Bot 87:457–462

    Article  CAS  Google Scholar 

  • Rustanius P, Griesbach RJ, Gross KC, Line M (1991) Chromosome analysis of Alstroemeria ligtu hybrids. HortScience 26:902–904

    Google Scholar 

  • Sandfacer J (1975) The occurrence of spontaneous triploids in different barley varieties. Hereditas 80:149–153

    Article  Google Scholar 

  • Sayama H, Moug T, Nishimura Y (1982) Cytological study in Tulipa gesneriana and T. fosteriana. Jpn J Breed 32:26–34

    Google Scholar 

  • Smyth DR, Kongsuwan K, Wisudharomn S (1989) A survey of C-band patterns in chromosomes of Lilium. Plant Syst Evol 163:53–69

    Article  Google Scholar 

  • Smyth DR (19990. Lilium chromosomes. The Lily Yearbook NALS 52:66–76

    Google Scholar 

  • Snowdon RJ, Köhler W, Friedt W, Köhler A (1997) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95:1320–1324

    Article  CAS  Google Scholar 

  • Srebniak M, Rasmussen O, Maluszynska J (2002) Cytogenetic analysis of asymetric potato hybrid. J Appl Genet 43:19–31

    PubMed  Google Scholar 

  • Trucco F, Jeschke MR, Rayburn AL, Tranel PJ (2005) Amaranthus hybridus can be pollinated frequently by A. tuberculatus under field conditions. Heredity 94:64–70

    Article  PubMed  CAS  Google Scholar 

  • Van Raamsdonk LWD, De Vries T (1995) Species relationships and taxonomy in Tulipa subg. Tulipa (Liliaceae). Plant Syst Evol 195:13–44

    Article  Google Scholar 

  • Van Scheepen J (1996) Classified list and international register of tulip names. General Bulbgrowers’ Association, Holland

  • Van Tuyl JM, Van Creij MGM (2005) Tulipa gesneriana and Tulipa hybrids. In: Flower Breeding and Genetics: Issues, Challenges and Opportunities for 21st Century, Chapter 23, Springer Verlag, pp 613–637

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Okazaki.

Additional information

The first and second author have contributed equally to this paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marasek, A., Mizuochi, H. & Okazaki, K. The origin of Darwin hybrid tulips analyzed by flow cytometry, karyotype analyses and genomic in situ hybridization. Euphytica 151, 279–290 (2006). https://doi.org/10.1007/s10681-006-9147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9147-y

Keywords

Navigation