Skip to main content
Log in

Genetic diversity of commercially grown Moringa oleifera Lam. cultivars from India by RAPD, ISSR and cytochrome P450-based markers

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Moringa oleifera is a less used, drought-tolerant tropical plant, rich in nutritionally and nutraceutically important bioactive compounds. It is native to India and now under cultivation in many countries, but no data is available on genetic variability. Three DNA marker techniques, i.e., random amplified polymorphic DNA (RAPD), inter simple sequence repeat (ISSR) and cytochrome P450 gene-based markers were used for the detection of genetic variability in eight Indian cultivars of M. oleifera, collected from various states of India. A total of 17 RAPD, 6 ISSR and 7 pairs of cytochrome P450-based markers generated 48.68, 48.57 and 40.00 % polymorphisms, respectively. The marker index (MI) for each of these marker systems (3.25 for RAPD, 4.73 ISSR and 2.95 for Cyt P450-based markers) suggest that ISSR markers are the most effective for assessment of genetic diversity. Based on the three types of marker data, the eight cultivars of M. oleifera were grouped into four sub-clusters in a dendrogram, but without any distinct geographical pattern. This suggests spread of planting material and high rates of gene flow through cross pollination. High bootstrap values (94.4 and 82.3) were obtained at major nodes of the dendrogram using the winboot software. The dendrogram and PCA plots generated from the binary data matrices of the three marker systems were found highly concordant to each other. This study reveals a huge genetic diversity among the cultivars and this can be utilised for conservation and cultivar development in breeding programmes to produce high yielding, nutritionally superior cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCR:

Polymerase chain reaction

RAPD:

Random amplified polymorphic DNA

ISSR:

Inter simple sequence repeats

PIC:

Polymorphism information content

UPGMA:

Unweighted pair group method with arithmetic averages

PCA:

Principal component analysis

MI:

Marker index

MR:

Multiplex ratio

References

  • Badr A, El-Shazly HH, Helail NS, El-Ghanim W (2012) Genetic diversity of Artemisia populations in central and north Saudi Arabia based on morphological variation and RAPD polymorphism. Plant Syst Evol 298(5):871–886

    Article  Google Scholar 

  • Bronzini de Caraffa V, Giannettini J, Gambotti C, Maury J (2002) Genetic relationships between cultivated and wild olives of corsica and sardinia using RAPD markers. Euphytica 123:263–271

    Google Scholar 

  • D’souza J, Kulkarni AR (1993) Comparative studies on nutritive values of tender foliage of seedlings and mature plants of Moringa oleifera Lam. J Econ Taxon Bot 17:479–485

    Google Scholar 

  • Das S, Mishra RC, Rout GR, Aparajita S (2007) Genetic variability and relationships among thirty genotypes of finger millet Eleusine coracana L. Gaertn. using RAPD markers. Z Naturforsch 62c:116–122

    Google Scholar 

  • Demir K, Bakir M, Sarikamiş G, Acunalp S (2010) Genetic diversity of eggplant (Solanum melongena) germplasm from Turkey assessed by SSR and RAPD markers. Genet Mol Res 9(3):1568–1576

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Cheng H, Duan Y, Jiang X, Li X (2012) Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers. Plant Syst Evol 298(2):469–483

    Article  Google Scholar 

  • Fuglie LJ (2005) The Moringa Tree: a local solution to malnutrition? Church World Service in Senegal

  • GarciaI AAF, Benchimo LL, Barbosa AMM, Geraldi IO, Souza CL Jr, De Souza AP (2004) Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genet Mol Biol 27:579–588

    Google Scholar 

  • Hedges SB (1992) The number of replications needed for accurate estimation of the bootstrap value in phylogenetic studies. Mol Biol Evol 9:366–369

    PubMed  CAS  Google Scholar 

  • Jaccard P (1980) New Researchers on the distribution florale. Waldensian Soc Nat Sci 44:22–270

    Google Scholar 

  • Jacobson A, Hedren M (2007) Phylogenetic relationships in Alisma (Alismataceae) based on RAPDs, and sequence data from ITS and trnL. Plant Syst Evol 265:27–44

    Article  Google Scholar 

  • Karp A (2002) The new genetic era: will it help us in managing genetic diversity? In: Engels JMM, Rao VR, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CAB Publishing, Wallingford, pp 43–56

    Google Scholar 

  • Kim MS, Moore PH, Zee F, Fitch MMM, Steiger DL, Manshardt RE et al (2002) Genetic diversity of Carica papaya as revealed by AFLP markers. Genome 45(3):503–512

    Google Scholar 

  • Lalas S, Tsaknis J (2002) Extraction and identification of natural antioxidants from the seeds of Moringa oleifera tree variety of Malavi. J Am Oil Chem Soc 79:677–683

    Article  CAS  Google Scholar 

  • Lalhruaitluanga H, Prasad MNV (2009) Comparative results of RAPD and ISSR markers for genetic diversity assessment in Melocanna baccifera Roxb. growing in Mizoram State of India. Afr J Biotechnol 8(22):6053–6062

    CAS  Google Scholar 

  • Maciel FL, Echeverrigaray S, Gerald LTS, Grazziotin FG (2003) Genetic relationships and diversity among Brazilian cultivars and landraces of common beans (Phaseolus vulgaris L.) revealed by AFLP markers. Genet Resour Crop Evol 50(8):887–893

    Article  CAS  Google Scholar 

  • Manoko MLK, van den Berg RG, Feron RMC, Van der Weerden GM, Mariani C (2008) Genetic diversity of the African hexaploid species Solanum scrabrum Mill. and Solanum nigrum L. (Solanaceae). Genet Resour Crop Evol 55(3):409–418

    Article  Google Scholar 

  • Mgendi MG, Manoko MK, Nyomora AM (2010) Genetic diversity between cultivated and non-cultivated Moringa oleifera Lam. provenances assessed by RAPD markers. J Cell Mol Biol 8(2):95–102

    CAS  Google Scholar 

  • Morton JF (1991) The horse radish tree: M. pterigosperma (Moringacea). A boon to arid lands. Econ Bot 45:318–333

    Article  Google Scholar 

  • Muluvi GM, Sprent JI, Soranzo N, Provan J, Odee D, Folkard G, McNicol JW, Powell W (1999) Amplified fragment length polymorphism (AFLP) analysis of genetic variation in Moringa oleifera Lam. Mol Ecol 8:463–470

    Article  PubMed  CAS  Google Scholar 

  • Muluvi GM, Sprent JI, Odee D, Powell W (2004) Estimates of outcrossing rates in Moringa oleifera using Amplified fragment length polymorphism (AFLP). Afr J Biotechnol 3(2):146–151

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  PubMed  CAS  Google Scholar 

  • Oduro I, Ellis WO, Owusu D (2008) Nutritional potential of two leafy vegetables: Moringa oleifera and Ipomoea batatas leaves. Sci Res Essay 3(2):57–60

    Google Scholar 

  • Ohkawa H, Imaishi H, Shiota N, Yamada T, Inui H, Ohkawa Y (1998) Molecular mechanisms of herbicide resistance with special emphasis on cytochrome P450 mono-oxigenases. Plant Biotech 15:173–176

    Article  CAS  Google Scholar 

  • Oliveira JTA, Silveira SB, Vasconcelos IM, Cavada BS, Moreira RA (1999) Compositional and nutritional attributes of seeds from the multipurpose tree Moringa oleifera Lamarck. J Sci Food Agric 79:815–820

    Article  CAS  Google Scholar 

  • Padmesh P, Sabu KK, Seeni S, Pushpangadan P (1999) The use of RAPD in assessing genetic variability in Andrographis paniculata Nees, a hepatoprotective drug. Curr Sci 76:833–835

    CAS  Google Scholar 

  • Panwar P, Saini RK, Sharma N, Yadav D, Kumar A (2010) Efficiency of RAPD, SSR and Cytochrome P450 gene based markers in accessing genetic variability amongst finger millet (Eleusine coracana) accessions. Mol Bio Rep 37:4075–4082

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) marker for germplasm analysis. Mol Breed 2(3):225–238

    Article  CAS  Google Scholar 

  • Rohlf FJ (2001) NTSYS-pc numerical taxonomy and multivariate analysis system.Version 5.1. Exeter Publishing Ltd, Setauket

  • Ruckmani K, Kavimani S, Anandan R, Jaykar B (1998) Effect of Moringa oleifera Lam on paracetamol-induced hepatoxicity. Indian J Pharm Sci 60:33–35

    Google Scholar 

  • Saini RK, Shetty NP, Giridhar P, Ravishankar GA (2012) Rapid in vitro regeneration method for Moringa oleifera and performance evaluation of field grown nutritionally enriched tissue cultured plants. 3 Biotech 2(3):187–192

    Article  Google Scholar 

  • Schalk M, Nedelkina S, Schoch G, Batard Y, Werck-Reichhart D (1999) Role of unusual amino-acid residues in the proximal and distal heme regions of a plant P450, CYP73A1. Biochem 38:6093–6103

    Article  CAS  Google Scholar 

  • Soller M, Beckmann JS (1983) Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet 67:25–33

    Article  Google Scholar 

  • Stiles JI, Lemme C, Sondur S, Morshidi MB, Manshardt R (1993) Using randomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivar. Theor Appl Genet 85:697–701

    CAS  Google Scholar 

  • Tanaka M, Watanabe JA, Watanabe KN (2001) Presence of genetic variation in the endangered semi-cultivated species Suita Kuwai (Sagittaria triforia L. var. suitensis). Breed Res 3:162

    Article  Google Scholar 

  • The Wealth of India (1962) A dictionary of Indian raw materials and industrial products, raw materials, vol. VI: L–M; Council of Scientific and Industrial Research, New Delhi

  • Yamanaka S, Nakamura I, Sato YI, Watanabe KN (2003a) Evaluation on genetic resources based on the diversity of functional regions 1 Genetic diversity of wild rice estimated by variations on xenobiotics-metabolizing cytochrome P450 gene-analogues. Breeding Res 5:249

    Google Scholar 

  • Yamanaka S, Suzuki E, Tanaka M, Takeda Y, Watanabe JA, Watanabe KN (2003b) Assessment of cytochrome P450 sequences offers a useful tool for determining genetic diversity in higher plant species. Theor Appl Genet 108:1–9

    Article  PubMed  CAS  Google Scholar 

  • Yap IV, Nelson RJ (1996) In WinBoot: A program for performing bootstrap analysis for binary data to determine the confidence limits of UPGMA-based dendrograms. Discussion paper series number 14, International Rice Research Institute, Manila

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Shetty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saini, R.K., Saad, K.R., Ravishankar, G.A. et al. Genetic diversity of commercially grown Moringa oleifera Lam. cultivars from India by RAPD, ISSR and cytochrome P450-based markers. Plant Syst Evol 299, 1205–1213 (2013). https://doi.org/10.1007/s00606-013-0789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0789-7

Keywords

Navigation