Skip to main content

Advertisement

Log in

Silicon fertilization of potato: expression of putative transporters and tuber skin quality

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A silicon transporter homolog was upregulated by Si fertilization and drought in potato roots and leaves. High Si in tuber skin resulted in anatomical and compositional changes suggesting delayed skin maturation.

Silicon (Si) fertilization has beneficial effects on plant resistance to biotic and abiotic stresses. Potatoes, low Si accumulators, are susceptible to yield loss due to suboptimal growth conditions; thus Si fertilization may contribute to crop improvement. The effect of Si fertilization on transcript levels of putative transporters, Si uptake and tuber quality was studied in potatoes grown in a glasshouse and fertilized with sodium silicate, under normal and drought-stress conditions. Anatomical studies and Raman spectroscopic analyses of tuber skin were conducted. A putative transporter, StLsi1, with conserved amino acid domains for Si transport, was isolated. The StLsi1 transcript was detected in roots and leaves and its level increased twofold following Si fertilization, and about fivefold in leaves upon Si × drought interaction. Nevertheless, increased Si accumulation was detected only in tuber peel of Si-fertilized plants—probably due to passive movement of Si from the soil solution—where it modified skin cell morphology and cell-wall composition. Compared to controls, skin cell area was greater, suberin biosynthetic genes were upregulated and skin cell walls were enriched with oxidized aromatic moieties suggesting enhanced lignification and suberization. The accumulating data suggest delayed tuber skin maturation following Si fertilization. Despite StLsi1 upregulation, low accumulation of Si in roots and leaves may result from low transport activity. Study of Si metabolism in potato, a major staple food, would contribute to the improvement of other low Si crops to ensure food security under changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal U (2014) 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front Plant Sci 5:490

    Article  PubMed  PubMed Central  Google Scholar 

  • Barel G, Ginzberg I (2008) Potato skin proteome is enriched with plant defence components. J Exp Bot 59:3347–3357

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240

    Article  CAS  Google Scholar 

  • Britez RM, Watanabe T, Jansen S, Reissmann CB, Osaki M (2002) The relationship between aluminium and silicon accumulation in leaves of Faramea marginata (Rubiaceae). New Phytol 156:437–444

    Article  CAS  Google Scholar 

  • Cai K, Gao D, Luo S, Zeng R, Yang J, Zhu X (2008) Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol Plant 134:324–333

    Article  PubMed  CAS  Google Scholar 

  • Cao A, Liquier J, Taillandier E (1995) Infrared and Raman spectroscopy of biomolecules. In: Schrader B (ed) Infrared and Raman spectroscopy. Methods and applications, Wiley, pp 344–371

    Google Scholar 

  • Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68

    Article  PubMed  CAS  Google Scholar 

  • Crusciol CAC, Pulz AL, Lemos LB, Soratto RP, Lima GPP (2009) Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci 49:949–954

    Article  CAS  Google Scholar 

  • Currie HA, Perry CC (2009) Chemical evidence for intrinsic ‘Si’ within Equisetum cell walls. Phytochemistry 70:2089–2095

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh RK, Vivancos J, Ramakrishnan G, Guérin V, Carpentier G, Sonah H, Labbé C, Isenring P, Belzile F, Bélanger RR (2015) A precise spacing between NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83:489–500

    Article  PubMed  CAS  Google Scholar 

  • Edwards HGM, Falk MJP (1997) Fourier-transform Raman spectroscopic study of unsaturated and saturated waxes. Spectrochim Acta A 53:2685–2694

    Article  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. P Natl Acad Sci USA 91:11–17

    Article  CAS  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Phys 50:641–664

    Article  CAS  Google Scholar 

  • Fauteux F, Chain F, Belzile F, Menzies JG, Belanger RR (2006) The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. P Natl Acad Sci USA 103:17554–17559

    Article  CAS  Google Scholar 

  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2011) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62:2001–2011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Forrest K, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 7:263–289

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Libson A, Miercke LJW, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486

    Article  PubMed  CAS  Google Scholar 

  • Ghareeb H, Bozso Z, Ott PG, Repenning C, Stahl F, Wydra K (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant 75:83–89

    Article  CAS  Google Scholar 

  • Gierlinger N (2014) Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA). Front Plant Sci 5:306

    Article  PubMed  PubMed Central  Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ginzberg I, Gerchikov N, Ziv E, Fogelman E, Warshavsky S, Tanami Z (2005) Potato tuber skin development: the effect of hot climate and plant desiccation. Acta Hort 684:93–98

    Article  Google Scholar 

  • Ginzberg I, Barel G, Ophir R, Tzin E, Tanami Z, Muddarangappa T, de Jong W, Fogelman E (2009) Transcriptomic profiling of heat-stress response in potato periderm. J Exp Bot 60:4411–4421

    Article  PubMed  CAS  Google Scholar 

  • Ginzberg I, Minz D, Faingold I, Soriano S, Mints M, Fogelman E, Warshavsky S, Zig U, Yermiyahu U (2012) Calcium mitigated potato skin physiological disorder. Am J Potato Res 89:351–362

    Article  CAS  Google Scholar 

  • Hänninen T, Kontturi E, Vuorinen T (2011) Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging. Phytochemistry 72:1889–1895

    Article  PubMed  Google Scholar 

  • Haynes KG, Gergela DM, Hutchinson CM, Yencho GC, Clough ME, Henninger MR, Halseth DE, Sandsted E, Porter GA, Ocaya PC (2012) Early generation selection at multiple locations may identify potato parents that produce more widely adapted progeny. Euphytica 186:573–583

    Article  Google Scholar 

  • He C, Wang L, Liu J, Liu X, Li X, Ma J, Lin Y, Xu F (2013) Evidence for ‘silicon’ within the cell walls of suspension-cultured rice cells. New Phytol 200:700–709

    Article  PubMed  CAS  Google Scholar 

  • Hodson MJ, Evans DE (1995) Aluminium/silicon interactions in higher plants. J Exp Bot 46:161–171

    Article  CAS  Google Scholar 

  • Hove R, Bhave M (2011) Plant aquaporins with non-aqua functions: deciphering the signature sequences. Plant Mol Biol 75:413–430

    Article  PubMed  CAS  Google Scholar 

  • Iwama K (2008) Physiology of the potato: new insights into root system and repercussions for crop management. Potato Res 51:333–353

    Article  Google Scholar 

  • Katz O (2014) Beyond grasses: the potential benefits of studying silicon accumulation in non-grass species. Front Plant Sci 5:376

    Article  PubMed  PubMed Central  Google Scholar 

  • Khandekar S, Leisner S (2011) Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. J Plant Physiol 168:699–705

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Kim KW, Park EW, Choi D (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095–1103

    Article  PubMed  Google Scholar 

  • Kolattukudy PE (1977) Lipid polymers and associated phenols, their chemistry, biosynthesis and role in pathogenesis. Recent Adv Phytochem 77:185–246

    Google Scholar 

  • Krits P, Fogelman E, Ginzberg I (2007) Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta 227:143–150

    Article  PubMed  CAS  Google Scholar 

  • Levin IW, Lewis EN (1990) Fourier transform Raman spectroscopy of biological materials. Anal Chem 62:1101A–1111A

    PubMed  CAS  Google Scholar 

  • Levy D (1985) The response of potatoes to a single transient heat or drought stress imposed at different stages of tuber growth. Potato Res 28:415–424

    Article  Google Scholar 

  • Levy D (1992) The response of potatoes (Solanum tuberosum L.) to salinity: plant growth and tuber yields in the arid desert of Israel. Ann Appl Biol 120:547–555

    Article  Google Scholar 

  • Levy D, Veilleux RE (2007) Adaptation of potato to high temperatures and salinity-a review. Am J Potato Res 84:487–506

    Article  Google Scholar 

  • Levy D, Fogelman E, Itzhak Y (1988) The effect of water salinity on potatoes (Solanum tuberosum L.): physiological indices and yielding capacity. Potato Res 31:601–610

    Article  Google Scholar 

  • Levy D, Coleman WK, Veilleux RE (2013) Adaptation of potato to water shortage: irrigation management and enhancement of tolerance to drought and salinity. Am J Potato Res 90:186–206

    Article  Google Scholar 

  • Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115:87–92

    Article  PubMed  CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. J Soil Sci Plant Nut 50:11–18

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  PubMed  CAS  Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  PubMed  CAS  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240

    Article  PubMed  CAS  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Ma JF (2011a) Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signal Behav 6:991–994

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011b) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peleg Z, Saranga Y, Fahima T, Aharoni A, Elbaum R (2010) Genetic control over silica deposition in wheat awns. Physiol Plant 140:10–20

    Article  PubMed  CAS  Google Scholar 

  • Pilon C, Soratto RP, Moreno LA (2013) Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Sci 53:1605–1614

    Article  Google Scholar 

  • Prinsloo LC, du Plooy W, van der Merwe C (2004) Raman spectroscopic study of the epicuticular wax layer of mature mango (Mangifera indica) fruit. J Raman Spectrosc 35:561–567

    Article  CAS  Google Scholar 

  • Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era-new interest for an old polymer. Plant Sci 180:399–812

    Article  PubMed  CAS  Google Scholar 

  • Reeve RM, Hautala E, Weaver ML (1969) Anatomy and compositional variation within potatoes 1. Developmental histology of the tuber. Am Potato J 46:361–373

    Article  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  PubMed  CAS  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  • Santos S, Graça J (2013) Stereochemistry of C18 monounsaturated cork suberin acids determined by spectroscopic techniques including 1H-NMR multiplet analysis of olefinic protons. Phytochem Anal 25:192–200

    Article  PubMed  Google Scholar 

  • Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytol 186:385–391

    Article  PubMed  CAS  Google Scholar 

  • Serra O, Soler M, Hohn C, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009a) Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration. J Exp Bot 60:697–707

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009b) CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiol 149:1050–1060

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Soler M, Serra O, Fluch S, Molinas M, Figueras M (2011) A potato skin SSH library yields new candidate genes for suberin biosynthesis and periderm formation. Planta 233:933–978

    Article  PubMed  CAS  Google Scholar 

  • Sui H, Han B-G, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  PubMed  CAS  Google Scholar 

  • Susnoschi M (1982) Growth and yield studies of potatoes developed in a semi-arid region 1. Yield response of several varieties grown as a double crop. Potato Res 25:59–69

    Article  Google Scholar 

  • Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110:433–443

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Bockhaven J, De Vleesschauwer D, Hofte M (2013) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64:1281–1293

    Article  PubMed  Google Scholar 

  • Vishwanath S, Delude C, Domergue F, Rowland O (2014) Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep. doi:10.1007/s00299-014-1727-z

    PubMed  Google Scholar 

  • Wishart J, George T, Brown L, Ramsay G, Bradshaw J, White P, Gregory P (2013) Measuring variation in potato roots in both field and glasshouse: the search for useful yield predictors and a simple screen for root traits. Plant Soil 368:231–249

    Article  CAS  Google Scholar 

  • Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamanaka S, Takeda H, Komatsubara S, Ito F, Usami H, Togawa E, Yoshino K (2009) Structures and physiological functions of silica bodies in the epidermis of rice plants. Appl Phys Lett 95:123703

    Article  Google Scholar 

  • Zellner W, Frantz J, Leisner S (2011) Silicon delays Tobacco ringspot virus systemic symptoms in Nicotiana tabacum. J Plant Physiol 168:1866–1869

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Zechariah Tanami from the Volcani Center for technical assistance. The research was funded by the Chief Scientist at the Ministry of Agriculture, and is a contribution of ARO, the Volcani Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idit Ginzberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vulavala, V.K.R., Elbaum, R., Yermiyahu, U. et al. Silicon fertilization of potato: expression of putative transporters and tuber skin quality. Planta 243, 217–229 (2016). https://doi.org/10.1007/s00425-015-2401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2401-6

Keywords

Navigation