Skip to main content

Advertisement

Log in

Adaptation of Potato to Water Shortage: Irrigation Management and Enhancement of Tolerance to Drought and Salinity

  • INVITED REVIEW
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Agriculture that depends upon irrigation is challenged by the increasing scarcity of fresh water and global climate change, and increasing human populations aggravate this situation. The potato crop depends on a regular water supply to secure high quality yields. Abiotic stress factors, such as drought, heat and salinity, have severe, adverse effects on growth and yield. In this review, different approaches to cope with water stress are presented. These approaches include altering morphological, physiological and genetic characteristics of potato and the use of biotechnology. For example, native potato and alien genes have been identified by transcriptomics and may provide useful candidates for deployment against stress. Transgenic potato cultivars harboring many of these genes have been evaluated and show promise for future release as new, stress tolerant cultivars. Potential management tools for economizing water use include efficient irrigation systems and precision agriculture. The use of alternative water resources, such as greywater, recycled wastewater, agricultural drainage water, and desalinated water will contribute to the water requirements of the potato crop and should help meet future challenges.

Resumen

La agricultura que depende de riego se enfrenta al reto de la escasez cada vez mayor de agua dulce y al cambio climático global, y con el aumento de la población humana se agrava esta situación. El cultivo de la papa depende de un suministro regular de agua para asegurar rendimientos de alta calidad. Los factores del agobio abiótico, tales como la sequía, el calor y la salinidad, tienen efectos severos adversos en el crecimiento y en rendimiento. En esta revisión se presentan diferentes enfoques para lidiar con el agobio hídrico. Estos enfoques incluyen alteraciones de características morfológicas, fisiológicas y genéticas de la papa y el uso de la biotecnología. Por ejemplo, papa silvestre y genes ajenos se han identificado por transcriptómica y pudieran proporcionar candidatos útiles para ubicación contra el agobio. Se han evaluado variedades de papa transgénicas que contienen muchos de estos genes y se muestran promisorias para futura liberación como variedades nuevas tolerantes al agobio. Las herramientas potenciales de manejo para economizar el uso de agua incluyen sistemas eficientes de riego y agricultura de precisión. El uso de fuentes alternativas de agua, tales como aguas negras, agua residual reciclada, agua del drenaje agrícola, y agua desalinizada, contribuirán a los requerimientos hídricos del cultivo de la papa y pudieran encarar retos futuros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerson, R.C., D.R. Krieg, T.D. Miller, and R.G. Stevens. 1977. Water relations and physiological activity of potatoes. Journal of the American Society for Horticultural Science 102: 572–575.

    CAS  Google Scholar 

  • Aghaei, K., A.A. Ehsanpour, and S. Komatsu. 2008. Proteome analysis of potato under salt stress. Journal of Proteome Research 7: 4858–4868.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, R., M.D. Kim, K.H. Back, H.S. Kim, H.S. Lee, S.Y. Kwon, N. Murata, W.I. Chung, and S.S. Kwak. 2008a. Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Reports 27: 687–698.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, R., Y.H. Kim, M.D. Kim, M.N. Phung, W.I. Chung, H.S. Lee, S.S. Kwak, and S.Y. Kwon. 2008b. Development of selection marker-free transgenic potato plants with enhanced tolerance to oxidative stress. Journal of Plant Biology 51: 401–407.

    Article  CAS  Google Scholar 

  • Ahmad, R., Y.H. Kim, M.D. Kim, S.Y. Kwon, K. Cho, H.S. Lee, and S.S. Kwak. 2010. Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiologia Plantarum 138: 520–533.

    Article  PubMed  CAS  Google Scholar 

  • Ahmadi, S.H., M.N. Anderson, F. Plauborg, R.T. Poulsen, C.R. Jensen, A.R. Sepakhah, and S. Hansen. 2010a. Effect of irrigation strategies and soils on field grown potatoes: Gas exchange and xylem ABA. Agricultural Water Management 97: 1486–1494.

    Article  Google Scholar 

  • Ahmadi, S.H., M.N. Anderson, F. Plauborg, R.T. Poulsen, C.R. Jensen, A.R. Sepakhah, and S. Hansen. 2010b. Effect of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agricultural Water Management 97: 1923–1930.

    Article  Google Scholar 

  • Ahn, Y.J., K. Claussen, and J.L. Zimmerman. 2004. Genotypic differences in the heat-shock response and thermotolerance in four potato cultivars. Plant Science 166: 901–911.

    Article  CAS  Google Scholar 

  • Alchanatis, V., Y. Cohen, S. Cohen, M. Moller, M. Sprinstin, M. Meron, J. Tsipris, Y. Saranga, and E. Sela. 2010. Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging. Precision Agriculture 11: 27–41.

    Article  Google Scholar 

  • Al-Kufaishi, S.A., B.S. Blackmore, and H. Sourell. 2006. The feasibility of using variable rate water application under a central pivot irrigation system. Irrigation and Drainage Systems 20: 317–327.

    Article  Google Scholar 

  • Alva, A.K. 2008. Setpoints for potato irrigation in sandy soils using real-time, continuous monitoring of soil-water content in soil profile. Journal of Crop Improvement 21: 117–137.

    Article  Google Scholar 

  • Anithakumari, A.M., O. Dolstra, B. Vosman, R.G.F. Visser, and C.G. van der Linden. 2011. In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica 181: 357–369.

    Article  Google Scholar 

  • Anonymous. 2006. Coping with water scarcity: A strategic issue and priority for system-wide action. http://www.unwater.org, Accessed April 30, 2011

  • Anonymous. 2009. Using recycled water for irrigation. National Program for Sustainable Irrigation Land & Water Australia. http://lwa.gov.au/files/products/national-program-sustainable-irrigation/pn30123/pn30123.pdf, Accessed May 2, 2012

  • Araus, J.L., G.A. Slafer, C. Royo, and M.D. Serret. 2008. Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Sciences 27: 377–412.

    Article  Google Scholar 

  • Ayers, R.S., and D.W. Westcot. 1985. Water quality for agriculture. FAO Irrigation and Drainage Paper (FAO) No 29 (rev 1), p 186 pp.

  • Basu, P.S., A. Sharma, I.D. Garg, and N.P. Sukumaran. 1999. Tuber sink modifies photosynthetic response in potato under water stress. Environmental and Experimental Botany 42: 25–39.

    Article  Google Scholar 

  • Bates, B.C., Z.W. Kundzewicz, S. Wu, and J.P. Palutikof (eds) (2008) Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, 210 pp.

  • Bayat, F., B. Shiran, D.V. Belyaev, N.O. Yur’eva, G.I. Sobol’kova, H. Alizadeh, M. Khodambashi, and A.V. Babakov. 2010. Potato plants bearing a vacuolar Na+/H+ antiporter HvNHX2 from barley are characterized by improved salt tolerance. Russian Journal of Plant Physiology 57: 696–706.

    Article  CAS  Google Scholar 

  • Bengough, A.G., B.M. McKenzie, P.D. Hallett, and T.A. Valentine. 2011. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany 62: 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, L., A.D. Ayers, and C.H. Wadleigh. 1951. The salt tolerance of White Rose potatoes. Proceedings American Society for Horticultural Science 57: 231–236.

    CAS  Google Scholar 

  • Bethke, P.C., R. Sabba, and A.J. Bussan. 2009. Tuber water and pressure potentials decrease and sucrose contents increase in response to moderate drought and heat stress. American Journal of Potato Research 86: 519–532.

    Article  Google Scholar 

  • Betts, K. 2004. Desalination, desalination everywhere. Environmental Science & Technology 38: 246A–247A.

    Article  CAS  Google Scholar 

  • Bishop, J.C., and D.W. Grimes. 1978. Precision tillage effects on potato root and tuber production. American Potato Journal 55: 65–71.

    Article  Google Scholar 

  • Blum, A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112: 119–123.

    Article  Google Scholar 

  • Blum, A. 2011. Drought resistance—is it really a complex trait? Functional Plant Biology 38: 753–757.

    Article  Google Scholar 

  • Boyer, J.S., S.C. Wong, and G.D. Farquhar. 1997. CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiology 114: 185–191.

    PubMed  CAS  Google Scholar 

  • Brodribb, T.J., T.S. Feild, and G.J. Jordan. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144: 1890–1898.

    Article  PubMed  CAS  Google Scholar 

  • Brodribb, T.J., T.S. Feild, and L. Sack. 2010. Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology 37: 488–498.

    Article  Google Scholar 

  • Bruns, S., and K. Caesar. 1990. Shoot development and tuber yield of several potato cultivars under high salt concentrations at different stages of development. Potato Research 33: 23–32.

    Article  Google Scholar 

  • Bruns, S., and C. Hechtbuchholz. 1990. Light and electron microscope studies on the leaves of several potato cultivars after application of salt at various developmental stages. Potato Research 33: 33–41.

    Article  Google Scholar 

  • Burney, J., L. Woltering, M. Burke, R. Naylor, and D. Pasternak. 2010. Solar-powered drip irrigation enhances food security in the Sudano-Sahel. Proceedings of the National Academy of Sciences of the United States of America 107: 1848–1853.

    Article  PubMed  CAS  Google Scholar 

  • Burton, W.G. 1981. Challenges for stress physiology in potato. American Potato Journal 58: 3–14.

    Article  Google Scholar 

  • Cabello, R., F. De Mendiburu, M. Bonierbal, P. Monneveux, W. Roca, and E. Chujoy. 2012. Large scale evaluation of potato improved varieties, genetic stocks and landraces for drought tolerance. American Journal of Potato Research 89: 400–410.

    Article  Google Scholar 

  • Campbell, M.D., G.S. Campbell, R. Kunkel, and R.I. Papendick. 1976. A model describing soil–plant–water relations for potatoes. American Potato Journal 53: 431–441.

    Article  Google Scholar 

  • Cassman, K.G. 1999. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America 96: 5952–5959.

    Article  PubMed  CAS  Google Scholar 

  • Cattivelli, L., F. Rizza, F.W. Badeck, E. Mazzucotelli, A.M. Mastrangelo, E. Francia, C. Maré, A. Tondelli, and A.M. Stanca. 2008. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research 105: 1–14.

    Article  Google Scholar 

  • Cellier, F., G. Conéjéro, J.C. Breitler, and F. Casse. 1998. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower: Accumulation of dehydrin transcripts correlates with tolerance. Plant Physiology 116: 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Cellier, F., Conéjére, and F. Casse. 2000. Dehydrin transcript fluctuations during a day/night cycle in drought-stressed sunflower. Journal of Experimental Botany 51: 299–304.

    Article  PubMed  CAS  Google Scholar 

  • Chaves, M.M., and M.M. Oliveira. 2004. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany 55: 2365–2384.

    Article  PubMed  CAS  Google Scholar 

  • Chung, I., B. Lee, J. He, R.P.H. Chang, and M.G. Kanatzidis. 2012. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485: 486–490.

    Article  PubMed  CAS  Google Scholar 

  • Clark, L.J., W.R. Whalley, and P.B. Barraclough. 2003. How do roots penetrate strong soil? Plant and Soil 255: 93–104.

    Article  CAS  Google Scholar 

  • Cohen, Y., V. Alchanatis, M. Meron, Y. Saranga, and J. Tsipris. 2005. Estimation of leaf water potential by thermal imagery and spatial analysis. Journal of Experimental Botany 56: 1843–1852.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, Y., V. Alchanatis, Y. Zusman, Z. Dar, D.J. Bonfil, A. Karnieli, A. Zilberman, A. Moulin, V. Ostrovsky, A. Levi, R. Brikman, and M. Shenker. 2010. Leaf nitrogen estimation in potato based on spectral data and on simulated bands of the VEN mu S satellite. Precision Agriculture 11: 520–537.

    Article  Google Scholar 

  • Coleman, W.K. 1986. Water relations of the potato (Solanum tuberosum L.) cultivars Raritan and Shepody. American Potato Journal 63: 263–276.

    Article  Google Scholar 

  • Coleman, W.K. 1988. Tuber age as a contributory factor in the water relations of potato (Solanum tuberosum L.). American Potato Journal 65: 109–118.

    Article  Google Scholar 

  • Coleman, W.K. 2008. Evaluation of wild Solanum species for drought resistance. 1. Solanum gandarillasii Cardenas. Environmental and Experimental Botany 62: 221–230.

    Article  Google Scholar 

  • CSIS. 2011. Water and national strength in Saudi Arabia. Center for Strategic and International Studies: Middle East Program. http://csis.org/files/publication/110405_Water%20and%20national%20strength%20in%20Saudi%20Arabia.pdf, Accessed May 23, 2012

  • Cutter, E.G. 1978. Structure and development of the potato plant. In The Potato Crop, ed. P.M. Harris, 70–152. London: Chapman & Hall.

    Google Scholar 

  • Dammer, K.H., and D. Ehlert. 2006. Variable-rate fungicide spraying in cereals using a plant cover sensor. Precision Agriculture 7: 137–148.

    Article  Google Scholar 

  • Darwish, T.M., T.W. Atallah, S. Hajhasan, and A. Haidar. 2006. Nitrogen and water use efficiency of fertigated processing potato. Agricultural Water Management 85: 95–104.

    Article  Google Scholar 

  • Deblonde, P.M.K., A.J. Haverkort, and J.F. Ledent. 1999. Responses of early and late potato cultivars to moderate drought conditions: Agronomic parameters and carbon isotope discrimination. European Journal of Agronomy 11: 91–105.

    Article  Google Scholar 

  • Dowgert, M., B. Marsh, R. Hutmacher, T.L. Thompson, D. Hannford, J. Phene, J. Anshutz, and C. Phene. 2006. Low pressure drip irrigation lessens agricultural inputs. irrigationtoolbox.com/ReferenceDocuments/…/IA/2006/012.pdf (Accessed 6 Jan 2013).

  • Downward, S.R., and R. Taylor. 2007. An assessment of Spain’s Programa AGUA and its implications for sustainable water management in the province of Almería, southeast Spain. Journal of Environmental Management 82: 277–289.

    Article  PubMed  Google Scholar 

  • Ekanayake, I.J., and J.P. de Jong. 1992. Stomatal response of some cultivated and wild-bearing potatoes in warm tropics as influenced by water deficits. Annals of Botany 70: 53–60.

    Google Scholar 

  • Eldredge, E.P., Z.A. Holmes, A.R. Mosley, C.C. Shock, and T.D. Stieber. 1996. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. American Potato Journal 73: 517–530.

    Article  Google Scholar 

  • Elkhatib, H.A., E.A. Elkhatib, A.M.K. Allah, and A.M. El-Sharkawy. 2004. Yield response of salt-stressed potato to potassium fertilization: A preliminary mathematical model. Journal of Plant Nutrition 27: 111–122.

    Article  CAS  Google Scholar 

  • Eltayeb, A.E., S. Yamamoto, M.E.E. Habora, Y. Matsukubo, M. Aono, H. Tsujimoto, and K. Tanaka. 2010. Greater protection against oxidative damages imposed by various environmental stresses in transgenic potato with higher level of reduced glutathione. Breeding Science 60: 101–109.

    Article  CAS  Google Scholar 

  • Eltayeb, A.E., S. Yamamoto, M.E.E. Habora, L.N. Yin, H. Tsujimoto, and K. Tanaka. 2011. Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breeding Science 61: 3–10.

    Article  CAS  Google Scholar 

  • Evers, D., I. Lefèvre, S. Legay, D. Lamoureux, J.F. Hausman, R.O.G. Rosales, L.R.T. Marca, L. Hoffmann, M. Bonierbale, and R. Schafleitner. 2010. Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. Journal of Experimental Botany 61: 2327–2343.

    Article  PubMed  CAS  Google Scholar 

  • Evers, D., S. Legay, D. Lamoureux, J.F. Hausman, L. Hoffmann, and J. Renaut. 2012. Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses. Plant Molecular Biology 78: 503–514.

    Article  PubMed  CAS  Google Scholar 

  • Fabeiro, C., F.M.D. Olalla, and J.A. de Juan. 2001. Yield and size of deficit irrigated potatoes. Agricultural Water Management 48: 255–266.

    Article  Google Scholar 

  • Feigin, A. 1985. Fertilization management of crops irrigated with saline water. Plant and Soil 89: 285–299.

    Article  CAS  Google Scholar 

  • Feigin, A. 1988. Fertilization for increasing salt tolerance of agricultural crops. Israel Agresearch 2: 99–138.

    Google Scholar 

  • Fereres, E., and M.A. Soriano. 2007. Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany 58: 147–159.

    Article  PubMed  CAS  Google Scholar 

  • Fidalgo, F., A. Santos, I. Santos, and R. Salema. 2004. Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants. Annals of Applied Biology 145: 185–192.

    Article  CAS  Google Scholar 

  • Fleisher, D.H., D.J. Timlin, and V.R. Reddy. 2008a. Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use, and productivity. Agricultural and Forest Meteorology 148: 1109–1122.

    Article  Google Scholar 

  • Fleisher, D.H., D.J. Timlin, and V.R. Reddy. 2008b. Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agronomy Journal 100: 711–719.

    Article  Google Scholar 

  • Fleming, K.L., and D.G. Westfall. 2000. Evaluating management zone technology and grid soil sampling for variable rate nitrogen application. In Proceedings of the 5th International Conference on Precision Agriculture, ed. P.C. Robert, R.H. Rust, and W.E. Larson. Madison: ASA/CSSA/SSSA.

    Google Scholar 

  • Foley, J.A., N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C. O’Connell, D.K. Ray, P.C. West, C. Balzer, E.M. Bennett, S.R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, and D.P.M. Zaks. 2011. Solutions for a cultivated planet. Nature 478: 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Franke, J., and G. Menz. 2007. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agriculture 8: 161–172.

    Article  Google Scholar 

  • Gandar, P.W., and C.B. Tanner. 1976. Leaf growth, tuber growth, and water potential in potatoes. Crop Science 16: 534–538.

    Article  Google Scholar 

  • Gawronska, H., M.K. Thornton, and R.B. Dwelle. 1992. Influence of heat stress on dry matter production and photoassimilate partitioning by four potato clones. American Potato Journal 69: 653–665.

    Article  Google Scholar 

  • Geerts, S., and D. Raes. 2009. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management 96: 1275–1284.

    Article  Google Scholar 

  • Ghassemi, F., A.J. Jakeman, and H.A. Nix. 1995. Salinization of land and water resources: Human causes, extent, management and case studies. Canberra: University of New South Wales Press, Ltd.

    Google Scholar 

  • Ghermandi, A., and R. Messalem. 2009. The advantages of NF desalination of brackish water for sustainable irrigation: The case of the Arava Valley in Israel. Desalination and Water Treatment 10: 101–107.

    Article  CAS  Google Scholar 

  • Ghosh, S.C., K. Asanuma, A. Kusutani, and M. Toyota. 2001. Effect of salt stress on some chemical components and yield of potato. Soil Science and Plant Nutrition 47: 467–475.

    Article  CAS  Google Scholar 

  • Girma, F.S., and D.R. Krieg. 1992. Osmotic adjustment in Sorghum. I. Mechanisms of diurnal osmotic potential changes. Plant Physiology 99: 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, R.E.R., S.A. Micallef, S.G. Gibbs, J.A. Davis, X. He, A. George, L.M. Kleinfelter, N.A. Schreiber, S. Mukherjee, A. Sapkota, S.W. Joseph, and A.R. Sapkota. 2012. Methicillin-resistant Staphylococcus aureus (MRSA) detected at four U.S. wastewater treatment plants. Environmental Health Perspectives 120: 1551–1558.

    Article  CAS  Google Scholar 

  • Gornall, J., R. Betts, E. Burke, R. Clark, J. Camp, K. Willett, and A. Wiltshire. 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 365: 2973–2989.

    Article  Google Scholar 

  • Grattan, S.R. 2002. Irrigation water sailinity and crop production, University of California Division of Agriculture and Natural Resources. Oakland: Farm Water Quality Planning Publication 8066.

    Google Scholar 

  • Gregory, P.J., and L.P. Simmonds. 1992. Water relations and growth of potatoes. In The potato crop: The scientific basis for improvement, ed. P.M. Harris, 214–246. London: Chapman and Hall.

    Chapter  Google Scholar 

  • Habash, D.Z., Z. Kehel, and M. Nachit. 2009. Genomic approaches for designing durum wheat ready for climate change with a focus on drought. Journal of Experimental Botany 60: 2805–2815.

    Article  PubMed  CAS  Google Scholar 

  • Habash, D.Z., Z. Kehel, and M. Nachit. 2010. Genomic approaches for designing durum wheat ready for climate change with a focus on drought (vol 60, pg 2805, 2009). Journal of Experimental Botany 61: 1249–1249.

    Article  CAS  Google Scholar 

  • Hajjar, R., and T. Hodgkin. 2007. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 156: 1–13.

    Article  Google Scholar 

  • Han, B., and A.R. Kermode. 1996. Dehydrin-like proteins in castor bean seeds and seedlings are differentially produced in response to ABA and water-deficit-related stresses. Journal of Experimental Botany 47: 933–939.

    Article  CAS  Google Scholar 

  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D.W. Lea, and M. Medina-Elizade. 2006. Global temperature change. Proceedings of the National Academy of Sciences of the United States of America 103: 14288–14293.

    Article  PubMed  CAS  Google Scholar 

  • Harris, P.M. 1992. The potato crop: The scientific basis for improvement. London: Chapman and Hall.

    Book  Google Scholar 

  • Harris, K., P.K. Subudhi, A. Borrell, D. Jordan, D. Rosenow, H. Nguyen, P. Klein, R. Klein, and J. Mullet. 2007. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. Journal of Experimental Botany 58: 327–338.

    Article  PubMed  CAS  Google Scholar 

  • Hassanpanah, D. 2010. Evaluation of potato cultivars for resistance against water deficit stress under in vivo conditions. Potato Research 53: 383–392.

    Article  Google Scholar 

  • Haverkort, A.J., and D.K.L. MacKerron. 1995. Potato ecology and modelling of crops under conditions limiting growth. Proceedings of the 2nd International Potato Modeling Conference. 3, 396. Wageningen: Kluwer.

    Book  Google Scholar 

  • Hawkes, J.G. 1990. The potato: Evolution, biodiversity and genetic resources. Bellhaven Press, London and Smithsonian Institution Press, Washington, 259 pp.

  • Hemavathi, C.P., K.E. Upadhyaya, N. Young, H.S. Akula, J.J. Kim, O.M. Heung, C.R. Oh, S.C. Aswath, D.H.Kim Chun, and S.W. Park. 2009. Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Science 177: 659–667.

    Google Scholar 

  • Hemavathi, C.P., N. Upadhyaya, K.E. Akula, S.C. Young, D.H.Kim Chun, and S.W. Park. 2010. Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnology Letters 32: 321–330.

    Google Scholar 

  • Hemavathi, C.P., N. Upadhyaya, H.S. Akula, J.H. Kim, O.M. Jeon, S.C. Ho, D.H.Kim Chun, and S.W. Park. 2011. Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing D-galacturonic acid reductase gene in response to various abiotic stresses. Molecular Breeding 28: 105–115.

    Google Scholar 

  • Heuer, B., and A. Nadler. 1998. Physiological response of potato plants to soil salinity and water deficit. Plant Science 137: 43–51.

    Article  CAS  Google Scholar 

  • Hijmans, R.J. 2003. The effect of climate change on global potato production. American Journal of Potato Research 80: 271–279.

    Article  Google Scholar 

  • Hijmans, R.J., and D.M. Spooner. 2001. Geographic distribution of wild potato species. American Journal of Botany 88: 2101–2112.

    Google Scholar 

  • Howden, S.M., J.F. Soussana, F.N. Tubiello, N. Chhetri, M. Dunlop, and H. Meinke. 2007. Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America 104: 19691–19696.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, E.W., S.J. Shin, and H.B. Kwon. 2011a. Identification of microRNAs and their putative targets that respond to drought stress in Solanum tuberosum. Journal of the Korean Society for Applied Biological Chemistry 54: 317–324.

    Article  CAS  Google Scholar 

  • Hwang, E.W., S.J. Shin, S.C. Park, M.J. Jeong, and H.B. Kwon. 2011b. Identification of miR172 family members and their putative targets responding to drought stress in Solanum tuberosum. Genes & Genomics 33: 105–110.

    Article  CAS  Google Scholar 

  • Hwang, E.W., S.J. Shin, B.K. Yu, M.O. Byun, and H.B. Kwon. 2011c. miR171 family members are involved in drought response in Solanum tuberosum. Journal of Plant Biology 54: 43–48.

    Article  CAS  Google Scholar 

  • Idso, S.B., R.D. Jackson, P.J. Pinter, R.J. Reginato, and J.L. Hatfield. 1981. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology 24: 45–55.

    Article  Google Scholar 

  • Iwama, K. 2008. Physiology of the potato: New insights into root system and repercussions for crop management. Potato Research 51: 333–353.

    Article  Google Scholar 

  • Iwama, K., and J. Yamaguchi. 2006. Chapter 7. Abiotic Stresses. In Handbook of potato production, improvement, and postharvest management, ed. J. Gopal and S.M.P. Khurana, 231–278. New York: The Haworth Press.

    Google Scholar 

  • Jackson, R.D., S.B. Idso, R.J. Reginato, and P.J. Pinter. 1981. Canopy temperature as a crop stress indicator. Water Resources Research 17: 1133–1138.

    Article  Google Scholar 

  • Jaggard, K.W., A.M. Qi, and E.S. Ober. 2010. Possible changes to arable crop yields by 2050. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 365: 2835–2851.

    Article  Google Scholar 

  • Jefferies, R.A. 1989. Water stress and leaf growth in field-grown crops of potato (Solanum tuberosum L.). Journal of Experimental Botany 40: 1375–1381.

    Article  Google Scholar 

  • Jefferies, R.A. 1993. Responses of potato genotypes to drought. I. Expansion of individual leaves and osmotic adjustment. Annals of Applied Biology 122: 93–104.

    Article  Google Scholar 

  • Jefferies, R.A., and D.K.L. MacKerron. 1993. Responses of potato genotypes to drought. II. Leaf area index, growth and yield. Annals of Applied Biology 122: 105–112.

    Article  Google Scholar 

  • Jones, H.G. 2007. Monitoring plant and soil water status: Established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany 58: 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.M., and N.C. Turner. 1978. Osmotic adjustment in leave of sorghum in response to water deficits. Plant Physiology 61: 122–126.

    Article  PubMed  CAS  Google Scholar 

  • Jones, H.G., M. Stoll, T. Santos, C. de Sousa, M.M. Chaves, and O.M. Grant. 2002. Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. Journal of Experimental Botany 53: 2249–2260.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, W.R., W.A. Dugas, and P.J. Shouse. 1983. Strategies for crop improvement for drought-prone regions. Agricultural Water Management 7: 281–299.

    Article  Google Scholar 

  • Kafkafi, U. 1994. Combined irrigation and fertilization in arid zones. Israel Journal of Plant Sciences 42: 301–320.

    Google Scholar 

  • Khosla, R., D. Inman, D.G. Westfall, R.M. Reich, M. Frasier, M. Mzuku, B. Koch, and A. Hornung. 2008. A synthesis of multi-disciplinary research in precision agriculture: Site-specific management zones in the semi-arid western Great Plains of the USA. Precision Agriculture 9: 85–100.

    Article  Google Scholar 

  • Kim, M.D., Y.H. Kim, S.Y. Kwon, B.Y. Jang, S.Y. Lee, D.J. Yun, J.H. Cho, S.S. Kwak, and H.S. Lee. 2011. Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants. Plant Physiology and Biochemistry 49: 891–897.

    Article  PubMed  CAS  Google Scholar 

  • Knutson, C.L., and S. Chen. 2010. UNDP Community Water Initiative: Fostering Water Security and Climate Change Adaptation and Mitigation. United Nations Development Programme (UNDP), GEF Small Grants Programme (GEF SGP), New York. http://www.undp.org/content/dam/undp/library/Environment%20and%20Energy/Local%20Development/CWI_Fostering_Water_Security_and_Adaptation.pdf, Accessed May 1, 2012

  • Kondrák, M., F. Marincs, B. Kalapos, Z. Juhász, and Z. Bánfalvi. 2011. Transcriptome analysis of potato leaves expressing the trehalose-6-phosphate synthase 1 gene of yeast. Plos ONE 6: e23466.

    Article  PubMed  CAS  Google Scholar 

  • Kotb, T.H.S., T. Watanabe, Y. Ogino, and K.K. Tanji. 2000. Soil salinization in the Nile Delta and related policy issues in Egypt. Agricultural Water Management 43: 239–261.

    Article  Google Scholar 

  • Kratzke, M.G., and J.P. Palta. 1985. Evidence for the existence of functional roots on potato tubers and stolons: Significance in water transport to the tuber. American Potato Journal 62: 227–236.

    Article  Google Scholar 

  • Lafta, A.M., and J.H. Lorenzen. 1995. Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiology 109: 637–643.

    PubMed  CAS  Google Scholar 

  • Lahlou, O., and J.F. Ledent. 2005. Root mass and depth, stolons and roots formed on stolons in four cultivars of potato under water stress. European Journal of Agronomy 22: 159–173.

    Article  Google Scholar 

  • Lamm, F.R., J.E. Ayars, and F.S. Nakayama. 2007. Microirrigation for crop production: Design, operation, and management. Amsterdam: Elsevier.

    Google Scholar 

  • Lee, E. 2010. Saudi Arabia and desalinization. Harvard International Review. 32, http://hir.harvard.edu/pressing-change/saudi-arabia-and-desalination-0. Accessed May 1, 2012

  • Lesczynski, D.B., and C.B. Tanner. 1976. Seasonal variation of root distribution of irrigated, field-grown Russet Burbank potato. American Potato Journal 53: 69–78.

    Article  Google Scholar 

  • Levy, D. 1983a. Varietal differences in the response of potatoes to repeated short periods of water stress in hot climates. I. Turgor maintenance and stomatal behavior. Potato Research 26: 303–313.

    Article  Google Scholar 

  • Levy, D. 1983b. Water deficit enhancement of proline and alpha amino nitrogen accumulation in potato plants and its association with susceptibility to drought. Physiologia Plantarum 57: 169–173.

    Article  CAS  Google Scholar 

  • Levy, D. 1985. The response of potatoes to a single transient heat or drought stress imposed at different stages of tuber growth. Potato Research 28: 415–424.

    Article  Google Scholar 

  • Levy, D. 1986. Genotypic variation in the response of potatoes (Solanum tuberosum L.) to high ambient temperatures and water deficit. Field Crops Research 15: 85–96.

    Article  Google Scholar 

  • Levy, D. 1992. Osmotic potential of potatoes subjected to a single cycle of water deficit. Potato Research 35: 17–24.

    Article  Google Scholar 

  • Levy, D., and G.C.C. Tai. 2013. Differential response of potatoes (Solanum tuberosum L.) to salinity in an arid environment and field performance of the seed tubers grown with fresh water in the following season. Agricultural Water Management 116: 122–127.

    Google Scholar 

  • Levy, D., and R.E. Veilleux. 2007. Adaptation of potato to high temperatures and salinity—A review. American Journal of Potato Research 84: 487–506.

    Article  Google Scholar 

  • LGMA. 2009. California leafy green marketing agreement. California Leafy Green Products. http://www.caleafygreens.ca.gov/, Accessed May 29, 2012.

  • Li, Z., N. Wang, T.S. Hong, A. Franzen, and J.N.A. Li. 2011. Closed-loop drip irrigation control using a hybrid wireless sensor and actuator network. Science China-Information Sciences 54: 577–588.

    Article  Google Scholar 

  • Luquez, V.M., and J.J. Guiamét. 2002. The stay green mutations d1 and d2 increase water stress susceptibility in soybeans. Journal of Experimental Botany 53: 1421–1428.

    Article  PubMed  CAS  Google Scholar 

  • Maas, E.V. 1986. Salt tolerance of plants. Applied Agricultural Research 1: 12–25.

    Google Scholar 

  • Maas, E.V., and G.J. Hoffman. 1977. Crop salt tolerance—Current assessment. Journal of the Irrigation and Drainage Division, American Society of Civil Engineers 103: 115–134.

    Google Scholar 

  • Maurel, C., T. Simonneau, and M. Sutka. 2010. The significance of roots as hydraulic rheostats. Journal of Experimental Botany 61: 3191–3198.

    Article  PubMed  CAS  Google Scholar 

  • Meiri, A., and Z. Plaut. 1985. Crop production and management under saline conditions. Plant and Soil 89: 253–271.

    Article  Google Scholar 

  • Micklin, P. 2007. The Aral Sea disaster. Annual Review of Earth and Planetary Sciences 35: 47–72.

    Article  CAS  Google Scholar 

  • Miller, D.E., and M.W. Martin. 1987. The effect of irrigation regime and subsoiling on yield and quality of three potato cultivars. American Potato Journal 64: 17–25.

    Article  Google Scholar 

  • Moffat, A.S. 2002. Finding new ways to protect drought-stricken plants. Science 296: 1226–1229.

    Article  PubMed  CAS  Google Scholar 

  • Moller, M., V. Alchanatis, Y. Cohen, M. Meron, J. Tsipris, A. Naor, V. Ostrovsky, M. Sprintsin, and S. Cohen. 2007. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of Experimental Botany 58: 827–838.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, K.T., T.A. Wheaton, L.R. Parsons, and W.S. Castle. 2008. Effects of reclaimed municipal waste water on horticultural characteristics, fruit quality, and soil and leaf mineral concentration of citrus. HortScience 43: 459–464.

    Google Scholar 

  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651–681.

    Article  PubMed  CAS  Google Scholar 

  • Munns, R., R.A. James, B. Xu, A. Athman, S.J. Conn, C. Jordans, C.S. Byrt, R.A. Hare, S.D. Tyerman, M. Tester, D. Plett, and M. Gilliham. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology 30: 360–U173.

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Carpena, R., M.D. Dukes, Y.C.C. Li, and W. Klassen. 2005. Field comparison of tensiometer and granular matrix sensor automatic drip irrigation on tomato. HortTechnology 15: 584–590.

    Google Scholar 

  • Muñoz-Carpena, R., M.D. Dukes, Y. Li, and W. Klassen. 2008. Design and field evaluation of a new controller for soil-water based irrigation. Applied Engineering in Agriculture 24: 183–191.

    Google Scholar 

  • Neumann, P.M. 2008. Coping mechanisms for crop plants in drought-prone environments. Annals of Botany 101: 901–907.

    Article  PubMed  CAS  Google Scholar 

  • Nimah, N.M., and R. Bashour. 2010. Modeling deficit irrigation water productivity as a function of crop root depth, Paper No. 1008942. 2010 American Society of Agricultural and Biological Engineers (ASABE) Annual International Meeting, ASABE, Pittsburgh, Pennsylvania

  • Oosterhuis, D.M., and S.D. Wullschleger. 1987. Osmotic adjustment in cotton (Gossypium hirsutum L.) leaves and roots in response to water stress. Plant Physiology 84: 1154–1157.

    Article  PubMed  CAS  Google Scholar 

  • Padhi, J., R.K. Misra, and J.O. Payero. 2012. Estimation of soil water deficit in an irrigated cotton field with infrared thermography. Field Crops Research 126: 45–55.

    Article  Google Scholar 

  • Parker, C.J., M.K.V. Carr, N.J. Jarvis, M.T.B. Evans, and V.H. Lee. 1989. Effect of subsoil loosening and irrigation on soil physical properties, root distribution and water uptake of potatoes (Solanum tuberosum). Soil & Tillage Research 13: 267–285.

    Article  Google Scholar 

  • Parsons, L.R., B. Sheikh, R. Holden, and D.W. York. 2010. Reclaimed water as an alternative water source for crop irrigation. HortScience 45: 1626–1629.

    Google Scholar 

  • Pehrson, L., R.L. Mahler, E.J. Bechinski, and C. Williams. 2010. Water management practices used in potato production in Idaho. American Journal of Potato Research 87: 253–260.

    Article  Google Scholar 

  • Persson, A., P. Pilesjö, and L. Eklundh. 2005. Spatial influence of topographical factors on yield of potato (Solanum tuberosum L.) in Central Sweden. Precision Agriculture 6: 341–357.

    Article  Google Scholar 

  • Pescod, M.B. 1992. Wastewater treatment and use in agriculture. FAO Irrigation and Drainage Paper (FAO) No 47, FAO, Rome, 139 pp.

  • Pierce, F.J., and P. Nowak. 1999. Aspects of precision agriculture. Advances in Agronomy 67: 1–85.

    Article  Google Scholar 

  • Porter, J.R., and M.A. Semenov. 2005. Crop responses to climatic variation. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 360: 2021–2035.

    Article  Google Scholar 

  • Qadir, M., D. Wichelns, L. Raschid-Sally, P.G. McCornick, P. Drechsel, A. Bahri, and P.S. Minhas. 2010. The challenges of wastewater irrigation in developing countries. Agricultural Water Management 97: 561–568.

    Article  Google Scholar 

  • Qi, S.Z., and F. Luo. 2005. Water environmental degradation of the Heihe River Basin in arid northwestern China. Environmental Monitoring and Assessment 108: 205–215.

    Article  PubMed  CAS  Google Scholar 

  • Rensink, W., A. Hart, J. Liu, O.Y. Shu, V. Zismann, and C.R. Buell. 2005a. Analyzing the potato abiotic stress transcriptome using expressed sequence tags. Genome 48: 598–605.

    Article  PubMed  Google Scholar 

  • Rensink, W.A., S. Iobst, A. Hart, S. Stegalkina, J. Liu, and C.R. Buell. 2005b. Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics 5: 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, M.P., and R. Ortiz. 2010. Adapting crops to climate change: A summary. In Climate change and crop production, ed. M.P. Reynolds, 1–8. Wallingford: CABI.

    Chapter  Google Scholar 

  • Reynolds, M., F. Dreccer, and R. Trethowan. 2007. Drought-adaptive traits derived from wheat wild relatives and landraces. Journal of Experimental Botany 58: 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, J.D. 1999. Use of saline drainage water for irrigation. In Agricultural drainage, monograph no 38, ed. R.W. Skaggs and van Schilfgaarde, 619–657. Madison: American Society of Agronomy.

    Google Scholar 

  • Rhoades, J.D., F.T. Bingham, J. Letey, G.J. Hoffman, A.R. Dedrick, P.J. Pinter, and J.A. Replogle. 1989. Use of saline drainage water for irrigation: Imperial Valley study. Agricultural Water Management 16: 26–36.

    Google Scholar 

  • Rhoades, J.D., A. Kandiah, and A.M. Mashali. 1992. The use of saline waters for crop production,. FAO irrigation and drainage paper 48, Rome, Italy.

  • Ribaut, J.M., and M. Ragot. 2007. Marker-assisted selection to improve drought adaptation in maize: The backcross approach, perspectives, limitations, and alternatives. Journal of Experimental Botany 58: 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Richards, R.A. 2006. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agricultural Water Management 80: 197–211.

    Article  Google Scholar 

  • Rizhsky, L., H.J. Liang, J. Shuman, V. Shulaev, S. Davletova, and R. Mittler. 2004. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology 134: 1683–1696.

    Article  PubMed  CAS  Google Scholar 

  • Rockström, J. 2003. Water for food and nature in drought-prone tropics: Vapour shift in rain-fed agriculture. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 358: 1997–2009.

    Article  Google Scholar 

  • Rodda, N., L. Salukazana, S.A.F. Jackson, and M.T. Smith. 2011. Use of domestic greywater for small-scale irrigation of food crops: Effects on plants and soil. Physics and Chemistry of the Earth 36: 1051–1062.

    Article  Google Scholar 

  • Sanz, M.A., V. Bonnélye, and G. Cremer. 2007. Fujairah reverse osmosis plant: 2 years of operation. Desalination 203: 91–99.

    Article  CAS  Google Scholar 

  • Schafleitner, R. 2009. Growing more potatoes with less water. Tropical Plant Biology 2: 111–121.

    Article  CAS  Google Scholar 

  • Schittenhelm, S., H. Sourell, and F.J. Löpmeier. 2006. Drought resistance of potato cultivars with contrasting canopy architecture. European Journal of Agronomy 24: 193–202.

    Article  Google Scholar 

  • Scholze, M., W. Knorr, N.W. Arnell, and I.C. Prentice. 2006. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences of the United States of America 103: 13116–13120.

    Article  PubMed  CAS  Google Scholar 

  • Scoffoni, C., M. Rawls, A. McKown, H. Cochard, and L. Sack. 2011. Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture. Plant Physiology 156: 832–843.

    Article  PubMed  CAS  Google Scholar 

  • Sepaskhah, A.R., and S.H. Ahmadi. 2010. A review on partial root-zone drying irrigation. International Journal of Plant Production 4: 241–258.

    Google Scholar 

  • Shalhevet, J. 1994. Using water of marginal quality for crop production: Major issues. Agricultural Water Management 25: 233–269.

    Article  Google Scholar 

  • Sharma, B.R., and P.S. Minhas. 2005. Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia. Agricultural Water Management 78: 136–151.

    Article  Google Scholar 

  • Sharma, N., P. Kumar, M.S. Kadian, S.K. Pandey, S.V. Singh, and S.K. Luthra. 2011. Performance of potato (Solanum tuberosum) clones under water stress. Indian Journal of Agricultural Sciences 81: 825–829.

    Google Scholar 

  • Shimshi, D., J. Shalhevet, and T. Meir. 1983. Irrigation regime effects on some physiological responses of potatoes. Agronomy Journal 75: 262–267.

    Article  Google Scholar 

  • Shin, D., S.J. Moon, S. Han, B.G. Kim, S.R. Park, S.K. Lee, H.J. Yoon, H.E. Lee, H.B. Kwon, D. Baek, B.Y. Yi, and M.O. Byun. 2011. Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiology 155: 421–432.

    Article  PubMed  CAS  Google Scholar 

  • Shinghal, K., A. Noor, N. Srivastava, and R. Singh. 2010. Wireless sensor networks in agriculture: For potato farming. International Journal of Engineering Science and Technology 2: 3955–3963.

    Google Scholar 

  • Shock, C.C., and E.B.G. Feibert. 2002. Deficit irrigation of potato, FAO Corporate Document Repository. Natural Resources Management and Environment Department. http://www.fao.org/docrep/004/Y3655E/y3655e08.htm#TopOfPage, Accessed May1, 2012.

  • Shock, C.C., A.B. Pereira, and E.P. Eldredge. 2007. Irrigation best management practices for potato. American Journal of Potato Research 84: 29–37.

    Article  Google Scholar 

  • Sinclair, T.R. 2011. Challenges in breeding for yield increase for drought. Trends in Plant Science 16: 289–293.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.J., J.N. Baillie, A.C. McCarthy, S.R. Raine, and C.P. Baillie. 2010. Review of Precision Irrigation Technologies and their Application. NCEA Publication 1003017/1. National Centre for Engineering in Agriculture (NCEA), University of Southern Queensland, Toowoomba.

  • Spitters, C.J.T., and A.H.C.M. Schapendonk. 1990. Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. Plant and Soil 123: 193–203.

    Article  Google Scholar 

  • Spooner, D.M., and A. Salas. 2006. Chapter 1: Structure, biosystematics, and genetic resources. In Handbook of potato production, improvement, and postharvest management, ed. J. Gopal and S.M.P. Khurana, 1–40. New York: The Haworth Press.

    Google Scholar 

  • Stalham, M.A., and E.J. Allen. 2001. Effect of variety, irrigation regime and planting date on depth, rate, duration and density of root growth in the potato (Solanum tuberosum) crop. Journal of Agricultural Science 137: 251–270.

    Google Scholar 

  • Stalham, M.A., and E.J. Allen. 2004. Water uptake in the potato (Solanum tuberosum) crop. Journal of Agricultural Science 142: 373–393.

    Article  Google Scholar 

  • Tanner, C.B., G.G. Weis, and D. Curwen. 1982. Russet Burbank rooting in sandy soils with pans following deep plowing. American Potato Journal 59: 107–112.

    Article  Google Scholar 

  • Tardieu, F. 2012. Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. Journal of Experimental Botany 63: 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, H.M. 1983. Managing root systems for efficient water use: An overview. In Limitations to efficient water use in crop production, ed. H.W. Taylor, W.R. Jordan, and T.R. Sinclair, 87–113. Wisconsin: American Society of Agronomy.

    Google Scholar 

  • The Potato Genome Sequencing Consortium. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.

    Article  CAS  Google Scholar 

  • Turner, N.C. 1982. The role of shoot characteristics in drought resistance of crop plants. In Drought resistance in crops with emphasis on rice, ed. The International Rice Research Institute, 115–134. Manila: IRRI.

    Google Scholar 

  • Turral, H., J. Burke, and J.M. Faures. 2011. Climate change, water and food security. FAO Water Reports 36 FAO, Rome p 174

  • UN Water. 2006. Coping with water scarcity. UN-Water Thematic Initiatives A strategic issue and priority for system-wide action. http://www.unwater.org, Accessed May 25, 2012.

  • Upadhyaya, C.P., J. Venkatesh, M.A. Gururani, L. Asnin, K. Sharma, H. Ajappala, and S.W. Park. 2011. Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnology Letters 33: 2297–2307.

    Article  PubMed  CAS  Google Scholar 

  • Valliyodan, B., and H.T. Nguyen. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology 9: 189–195.

    Article  PubMed  CAS  Google Scholar 

  • van Bergeijk, J., D. Goense, and L. Speelman. 2001. Soil tillage resistance as a tool to map soil type differences. Journal of Agricultural Engineering Research 79: 371–387.

    Google Scholar 

  • van der Zaag, D.E. 1991. The potato crop in Saudi Arabia. Ministry of Agriculture and Water. Riyadh: Saudi Potato Development Programme.

    Google Scholar 

  • van Loon, C.D. 1981. The effect of water stress on potato growth, development, and yield. American Potato Journal 58: 51–69.

    Article  Google Scholar 

  • Vasquez-Robinet, C., S.P. Mane, A.V. Ulanov, J.I. Watkinson, V.K. Stromberg, D. De Koeyer, R. Schafleitner, D.B. Willmot, M. Bonierbale, H.J. Bohnert, and R. Grene. 2008. Physiological and molecular adaptations to drought in Andean potato genotypes. Journal of Experimental Botany 59: 2109–2123.

    Article  PubMed  CAS  Google Scholar 

  • Vellidis, G., M. Tucker, C. Perry, C. Wen, and C. Bednarz. 2008. A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture 61: 44–50.

    Article  Google Scholar 

  • Verslues, P.E., and E.A. Bray. 2004. LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis. Plant Physiology 136: 2831–2842.

    Article  PubMed  CAS  Google Scholar 

  • Vigneswaran, S., and M. Sundaravadivel. 2004. Recycle and reuse of domestic wastewater in Wastewater: Recycle, Reuse and Reclamation. In Encyclopedia of Life Support Systems (EOLSS), Developed under the auspices of UNESCO, ed. Saravanamuthu (Vigi) Vigneswaran. Oxford: Eolss.

  • Vos, J., and J. Groenwold. 1989a. Genetic differences in water-use efficiency, stomatal conductance and carbon isotope fractionation in potato. Potato Research 32: 113–121.

    Article  Google Scholar 

  • Vos, J., and J. Groenwold. 1989b. Characteristics of photosynthesis and conductance of potato canopies and the effects of cultivar and transient drought. Field Crops Research 20: 237–250.

    Article  Google Scholar 

  • Vos, J., and A.J. Haverkort. 2007. Water availability and potato crop performance. In Potato biology and biotechnology: Advances and perspectives, ed. D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, M.A. Taylor, D.K.L. MacKerron, and H.A. Ross, 333–351. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Walworth, J.L., and D.E. Carling. 2002. Tuber initiation and development in irrigated and non-irrigated potatoes. American Journal of Potato Research 79: 387–395.

    Article  Google Scholar 

  • Wang, F.X., Y.H. Kang, S.P. Liu, and X.Y. Hou. 2007. Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. Agricultural Water Management 88: 34–42.

    Article  Google Scholar 

  • Wang, X.Z., W.P. Yang, A. Wheaton, N. Cooley, and B. Moran. 2010. Efficient registration of optical and IR images for automatic plant water stress assessment. Computers and Electronics in Agriculture 74: 230–237.

    Article  Google Scholar 

  • Watanabe, K.N., A. Kikuchi, T. Shimazaki, and M. Asahina. 2011. Salt and drought stress tolerances in transgenic potatoes and wild species. Potato Research 54: 319–324.

    Article  CAS  Google Scholar 

  • WATEC. 2007. Wastewater Treatment and Reclamation. Mekerot, Israel National Water Co. www.mekorot.co.il/Eng/Activities/Pages/WastewaterTreatmentandReclamation.aspx, Accessed May 29, 2012.

  • Waterer, D., N.T. Benning, G.H. Wu, X.M. Luo, X.J. Liu, M. Gusta, A. McHughen, and L.V. Gusta. 2010. Evaluation of abiotic stress tolerance of genetically modified potatoes (Solanum tuberosum cv. Desiree). Molecular Breeding 25: 527–540.

    Article  CAS  Google Scholar 

  • Watkinson, J.I., L. Hendricks, A.A. Sioson, C. Vasquez-Robinet, V. Stromberg, L.S. Heath, M. Schuler, H.J. Bohnert, M. Bonierbale, and R. Grene. 2006. Accessions of Solanum tuberosum ssp. andigena show differences in photosynthetic recovery after drought stress as reflected in gene expression profiles. Plant Science 171: 745–758.

    Article  CAS  Google Scholar 

  • Weisz, R., J. Kaminski, and Z. Smilowitz. 1994. Water deficit effects on potato leaf growth and transpiration: Utilizing fraction extractable soil water for comparison with other crops. American Potato Journal 71: 829–840.

    Article  Google Scholar 

  • White, J.W., P. Andrade-Sanchez, M.A. Gore, K.F. Bronson, T.A. Coffelt, M.M. Conley, K.A. Feldmann, A.N. French, J.T. Heun, D.J. Hunsaker, M.A. Jenks, B.A. Kimball, R.L. Roth, R.J. Strand, K.R. Thorp, G.W. Wall, and G. Wang. 2012. Field-based phenomics for plant genetics research. Field Crops Research 133: 101–112.

    Article  Google Scholar 

  • Whitmore, A.P., and W.R. Whalley. 2009. Physical effects of soil drying on roots and crop growth. Journal of Experimental Botany 60: 2845–2857.

    Article  PubMed  CAS  Google Scholar 

  • Witcombe, J.R., P.A. Hollington, C.J. Howarth, S. Reader, and K.A. Steele. 2008. Breeding for abiotic stresses for sustainable agriculture. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 363: 703–716.

    Article  CAS  Google Scholar 

  • Wolf, J., and M. van Oijen. 2002. Modelling the dependence of European potato yields on changes in climate and CO2. Agricultural and Forest Meteorology 112: 217–231.

    Article  Google Scholar 

  • Xie, K.Y., X.X. Wang, R.F. Zhang, X.F. Gong, S.B. Zhang, V. Mares, C. Gavilán, A. Posadas, and R. Quiroz. 2012. Partial root-zone drying irrigation and water utilization efficiency by the potato crop in semi-arid regions in China. Scientia Horticulturae 134: 20–25.

    Article  Google Scholar 

  • Yoo, C.Y., H.E. Pence, P.M. Hasegawa, and M.V. Mickelbart. 2009. Regulation of transpiration to improve crop water use. Critical Reviews in Plant Sciences 28: 410–431.

    Article  CAS  Google Scholar 

  • Zakaluk, R., and R. Sri Ranjan. 2006. Artificial neural network modelling of leaf water potential for potatoes using RGB digital Images: A greenhouse study. Potato Research 49: 255–272.

    Article  Google Scholar 

  • Zhang, N., H.J. Si, G. Wen, H.H. Du, B.L. Liu, and D. Wang. 2011. Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnology Reports 5: 71–77.

    Article  Google Scholar 

  • Zhu, X.G., G.L. Zhang, D. Tholen, Y. Wang, C.P. Xin, and Q.F. Song. 2011. The next generation models for crops and agro-ecosystems. Science China-Information Sciences 54: 589–597.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs Yafit Cohen and V. Alchnatis from the Volcani Center, Israel, for providing and allowing using unpublished data of their research (Fig. 2) and for reviewing the PI section and contributing to its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, D., Coleman, W.K. & Veilleux, R.E. Adaptation of Potato to Water Shortage: Irrigation Management and Enhancement of Tolerance to Drought and Salinity. Am. J. Potato Res. 90, 186–206 (2013). https://doi.org/10.1007/s12230-012-9291-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-012-9291-y

Keywords

Navigation