Skip to main content
Log in

Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The potato steroidal glycoalkaloids (SGA) are toxic secondary metabolites, and their total content in tubers should not exceed 20 mg/100 g fresh weight. The two major SGA in cultivated potato (Solanum tuberosum) are α-chaconine and α-solanine. SGA biosynthetic genes and the genetic factors that control their expression have not yet been determined. In the present study, potato genotypes exhibiting different levels of SGA content showed an association between high SGA levels in their leaves and tubers and high expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (hmg1) and squalene synthase 1 (pss1), genes of the mevalonic/isoprenoid pathway. Transcripts of other key enzymes of branches of the isoprenoid pathway, vetispiradiene/sesquiterpene synthase (pvs1) and sterol C24-methyltransferase type1 (smt1), were undetectable or exhibited stable expression regardless of SGA content, respectively, suggesting facilitated precursor flow to the SGA biosynthetic branch. The transcript ratio of solanidine glucosyltransferase (sgt2) to solanidine galactosyltransferase (sgt1) was correlated to the documented chaconine-to-solanine ratio in the tested genotypes. Significantly higher expression of hmg1, pss1, smt1, sgt1 and sgt2 was monitored in the tuber phelloderm than in the parenchyma of the tuber’s flesh, targeting the former as the main SGA-producing tissue in the tuber, in agreement with the known high SGA content in the layers directly under the tuber skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SGA:

Steroidal glycoalkaloids

HMGR:

3-Hydroxy-3-methylglutaryl coenzyme A reductase

PSS:

Squalene synthase

SMT1:

Sterol C24-methyltransferase type1

SGT1:

Solanidine galactosyltransferase

SGT2:

Solanidine glucosyltransferase

References

  • Arnqvist L, Dutta PC, Jonsson L, Sitbon F (2003) Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol 131:1792–1799

    Article  PubMed  CAS  Google Scholar 

  • Austin S, Lojkowska E, Ehlenfeldt MK, Kelman A, Helgeson JP (1988) Fertile interspecific somatic hybrids of Solanum: a novel source of resistance to Erwinia soft rot. Phytopathology 78:1216–1220

    Article  Google Scholar 

  • Bejarano L, Mignolet E, Devaux A, Espinola N, Carrasco E, Larondelle Y (2000) Glycoalkaloids in potato tubers: the effect of variety and drought stress on the alpha-solanine and alpha-chaconine contents of potatoes. J Sci Food Agric 80:2096–2100

    Article  CAS  Google Scholar 

  • Bergenstråhle A, Tillberg E, Jonsson L (1992) Regulation of glycoalkaloid accumulation in potato tuber disks. J Plant Physiol 140:269–275

    Google Scholar 

  • Bouarte-Medina T, Fogelman E, Chani E, Miller AR, Levin I, Levy D, Veilleux RE (2002) Identification of molecular markers associated with leptine in reciprocal backcross families of diploid potato. Theor Appl Genet 105:1010–1018

    Article  CAS  Google Scholar 

  • Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343

    PubMed  CAS  Google Scholar 

  • Choi D, Ward BL, Bostock RM (1992) Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell 4:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Choi D, Bostock RM, Avdiushko S, Hildebrand DF (1994) Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Nat Acad Sci USA 91:2329–2333

    Article  PubMed  CAS  Google Scholar 

  • Dale MFB, Griffiths DW, Bain H, Todd D (1993) Glycoalkaloid increase in Solanum tuberosum on exposure to light. Ann Appl Biol 123:411–418

    Article  CAS  Google Scholar 

  • Dale S, Arro M, Becerra B, Morrice NG, Boronat A, Hardie DG, Ferrer A (1995) Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl Co-A reductase (isoform HMGR1) from Arabidopsis thaliana, and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl CoA reductase kinase. Eur J Biochem 233:506–513

    Article  PubMed  CAS  Google Scholar 

  • Dimenstein L, Lisker N, Kedar N, Levy D (1997) Changes in the content of steroidal glycoalkaloids in potato tubers grown in the field and in the greenhouse under different conditions of light, temperature and daylength. Physiol Mol Plant Pathol 50:391–402

    Article  CAS  Google Scholar 

  • Fewell AM, Roddick JG (1997) Potato glycoalkaloid impairment of fungal development. Mycol Res 101:597–603

    Article  CAS  Google Scholar 

  • Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–132

    Article  CAS  Google Scholar 

  • Friedman M, Roitman JN, Kozukue N (2003) Glycoalkaloid and calystegine contents of eight potato cultivars. J Agric Food Chem 51:2964–2973

    Article  PubMed  CAS  Google Scholar 

  • Friedman M, Lee KR, Kim HJ, Lee IS, Kozukue N (2005) Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J Agric Food Chem 53:6162–6169

    Article  PubMed  CAS  Google Scholar 

  • Heftmann E (1983) Biogenesis of steroids in Solanaceae. Phytochemistry 22:1843–1860

    Article  CAS  Google Scholar 

  • Kondo K, Uritani I, Oba K (2003) Induction mechanism of 3-hydroxy-3-methylglutaryl-CoA reductase in potato tuber and sweet potato root tissues. Biosci Biotechnol Biochem 67:1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Korth KL, Jaggard DAW, Dixon RA (2000) Developmental and light-regulated post-translational control of 3-hydroxy-3-methylglutaryl-CoA reductase levels in potato. Plant J 23:507–516

    Article  PubMed  CAS  Google Scholar 

  • Lafta AM, Lorenzen JH (2000) Influence of high temperature and reduced irradiance on glycoalkaloid levels in potato leaves. J Am Soc Hortic Sci 125:563–566

    CAS  Google Scholar 

  • Lawson DR (1993) Chemistry and biochemistry of Solanum chacoense, bitter steroidal alkaloids. PhD thesis, Ohio State University

  • Lulai EC, Freeman TP (2001) The importance of phellogen cells and their structural characteristics in susceptibility and resistance to excoriation in immature and mature potato tuber (Solanum tuberosum L.) periderm. Ann Bot 88:555–561

    Article  Google Scholar 

  • Mackintosh RW, Davies SP, Clarke PR, Weekes J, Gillespie JG, Gibb BJ, Hardie DG (1992) Evidence for a protein kinase cascade in higher plants. 3-Hydroxy-3-methylglutaryl-CoA reductase kinase. Eur J Biochem 209:923–931

    Article  PubMed  CAS  Google Scholar 

  • McCue KF, Shepherd LVT, Allen PV, Maccree MM, Rockhold DR, Corsini DL, Davies HV, Belknap WR (2005) Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Sci 168:267–273

    Article  CAS  Google Scholar 

  • McCue KF, Allen PV, Shepherd LVT, Blake A, Whitworth J, Maccree MM, Rockhold DR, Stewart D, Davies HV, Belknap WR (2006) The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67:1590–1597

    Article  PubMed  CAS  Google Scholar 

  • McCue KF, Allen PV, Shepherd LVT, Blake A, Maccree MM, Rockhold DR, Novy RG, Stewart D, Davies HV, Belknap WR (2007) Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68:327–334

    Article  PubMed  CAS  Google Scholar 

  • Moehs CP, Allen PV, Friedman M, Belknap WR (1997) Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J 11:227–236

    Article  PubMed  CAS  Google Scholar 

  • Morgan MRA, Coxon DT, Bramham S, Chan HWS, Vangelde WMJ, Allison MJ (1985) Determination of the glycoalkaloid content of potato tubers by 3 methods including enzyme linked immunosorbent assay. J Sci Food Agri 36:282–288

    Article  CAS  Google Scholar 

  • Osman S, Sinden SL, Deahl K, Moreau R (1987) The metabolism of solanidine by microsomal fractions from Solanum chacoense. Phytochemistry 26:3163–3165

    Article  CAS  Google Scholar 

  • Pehu E, Gibson RW, Jones MGK, Karp A (1990) Studies on the genetic basis of resistance to potato leaf roll virus, potato virus Y and potato virus X in Solanum brevidens using somatic hybrids of Solanum brevidens and Solanum tuberosum. Plant Sci 69:95–101

    Article  Google Scholar 

  • Percival G, Dixon G, Sword A (1994) Glycoalkaloid concentration of potato tubers following continuous illumination. J Sci Food Agric 66:139–144

    Article  CAS  Google Scholar 

  • Percival GC, Karim MS, Dixon GR (1998) Influence of light enhanced glycoalkaloids on resistance of potato tubers to Fusarium sulphureum and Fusarium solani var. coeruleum. Plant Pathol 47:665–670

    Article  CAS  Google Scholar 

  • Rangarajan A, Miller AR, Veilleux RE (2000) Leptine glycoalkaloids reduce feeding by Colorado potato beetle in diploid Solanum sp hybrids. J Am Soc Hortic Sci 125:689–693

    CAS  Google Scholar 

  • Reeve RM, Hautala E, Weaver ML (1969) Anatomy and compositional variation within potatoes 1. Developmental histology of the tuber. Am Potato J 46:361–373

    Google Scholar 

  • Rokka V-M, Xu Y-S, Kankila J, Kuusela A, Pulli S, Pehu E (1994) Identification of somatic hybrids of dihaploid Solanum tuberosum lines and S. brevidens by species specific RAPD patterns and assessment of disease resistance of the hybrids. Euphytica 80:207

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanford LL, Deahl KL, Sinden SL, Ladd TL (1992) Glycoalkaloid contents in tubers from Solanum tuberosum populations selected for potato leafhopper resistance. Am Potato J 69:693–703

    CAS  Google Scholar 

  • Sanford LL, Kobayashi RS, Deahl KL, Sinden SL (1997) Diploid and tetraploid Solanum chacoense genotypes that synthesize leptine glycoalkaloids and deter feeding by Colorado potato beetle. Am Potato J 74:15–21

    CAS  Google Scholar 

  • Shih M, Kuc J (1973) Incorporation of C-14 from acetate and mevalonate into rishitin and steroid glycoalkaloids by potato tuber slices inoculated with Phytophthora infestans. Phytopathology 63:826–829

    Article  CAS  Google Scholar 

  • Sinden SL, Sanford LL, Deahl KL (1986) Segregation leptine glycoalkaloids in Solanum chacoense bitter. J Agric Food Chem 34:372–377

    Article  CAS  Google Scholar 

  • Sinden SL, Sanford LL, Cantelo WW, Deahl KL (1988) Bioassay of segregating plants. A strategy for studying chemical defence. J Chem Ecol 14:1941–1950

    Article  CAS  Google Scholar 

  • Smith DB, Roddick JG, Jones JL (1996) Potato glycoalkaloids: some unanswered questions. Trends Food Sci Tech 7:126–131

    Article  CAS  Google Scholar 

  • Stermer BA, Bostock RM (1987) Involvement of 3-hydroxy-3-methylglutaryl coenzyme-A reductase in the regulation of sesquiterpenoid phytoalexin synthesis in potato. Plant Physiol 84:404–408

    Article  PubMed  CAS  Google Scholar 

  • Stermer BA, Bianchini GM, Korth KL (1994) Regulation of HMG-CoA reductase activity in plants. J Lipid Res 35:1133–1140

    PubMed  CAS  Google Scholar 

  • Threlfall DR, Whitehead IM (1988) Coordinated inhibition of squalene synthetase and induction of enzymes of sesquiterpenoid phytoalexin biosynthesis in cultures of Nicotiana tabacum. Phytochemistry 27:2567–2580

    Article  CAS  Google Scholar 

  • Valkonen JPT, Keskitalo M, Vasara T, Pietila L (1996) Potato glycoalkaloids: a burden or a blessing? Crit Rev Plant Sci 15:1–20

    Article  CAS  Google Scholar 

  • Veilleux RE, Miller AR (1998) Hybrid breakdown in the F-1, between Solanum chacoense and S. phureja and gene transfer for leptine biosynthesis. J Am Soc Hortic Sci 123:854–858

    CAS  Google Scholar 

  • Vogeli U, Chappell J (1988) Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol 88:1291–1296

    PubMed  CAS  Google Scholar 

  • Yang ZB, Park HS, Lacy GH, Cramer CL (1991) Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme-A reductase genes by wounding and pathogen challenge. Plant Cell 3:397–405

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka H, Yamada N, Doke N (1999) cDNA cloning of sesquiterpene cyclase and squalene synthase, and expression of the genes in potato tuber infected with Phytophthora infestans. Plant Cell Physiol 40:993–998

    PubMed  CAS  Google Scholar 

  • Zook MN, Kuc JA (1991) Induction of sesquiterpene cyclase and suppression of squalene synthetase activity in elicitor treated or fungal infected potato tuber tissue. Physiol Mol Plant Pathol 39:377–390

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is a contribution of the Volcani Center no. 129/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idit Ginzberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2007_602_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krits, P., Fogelman, E. & Ginzberg, I. Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta 227, 143–150 (2007). https://doi.org/10.1007/s00425-007-0602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0602-3

Keywords

Navigation