Skip to main content
Log in

SNP marker diversity in common bean (Phaseolus vulgaris L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Single nucleotide polymorphism (SNP) markers have become a genetic technology of choice because of their automation and high precision of allele calls. In this study, our goal was to develop 94 SNPs and test them across well-chosen common bean (Phaseolus vulgaris L.) germplasm. We validated and accessed SNP diversity at 84 gene-based and 10 non-genic loci using KASPar technology in a panel of 70 genotypes that have been used as parents of mapping populations and have been previously evaluated for SSRs. SNPs exhibited high levels of genetic diversity, an excess of middle frequency polymorphism, and a within-genepool mismatch distribution as expected for populations affected by sudden demographic expansions after domestication bottlenecks. This set of markers was useful for distinguishing Andean and Mesoamerican genotypes but less useful for distinguishing within each gene pool. In summary, slightly greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool but polymorphism rate between genotypes was consistent with genepool and race identity. Our survey results represent a baseline for the choice of SNP markers for future applications because gene-associated SNPs could themselves be causative SNPs for traits. Finally, we discuss that the ideal genetic marker combination with which to carry out diversity, mapping and association studies in common bean should consider a mix of both SNP and SSR markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afanador LK, Hadley SD (1993) Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean. Bean Improv Coop 35:10–11

    Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  PubMed  CAS  Google Scholar 

  • Bahram S, Inoko H (2007) Microsatellite markers for genome-wide association studies. Nat Rev Genet 8

  • Bauer F, Elbers CC, Adan RAH, Loos RJF, Onland-Moret NC, Grobbee DE, van Vliet-Ostaptchouk JV, Wijmenga C, van der Schouw YT (2009) Obesity genes identified in genome-wide association studies are associated with adiposity measures and potentially with nutrient-specific food preference. Am J Clin Nutr 90:951–959

    Article  PubMed  CAS  Google Scholar 

  • Becerra-Velazquez L, Gepts P (1994) RFLP diversity of common bean (Phaseolus vulgaris L.) in its centres of origin. Genome 37:256–263

    Article  Google Scholar 

  • Beebe S, Skroch PW, Tohme J, Duque MC, Pedraza F, Nienhuis J (2000) Structure of genetic diversity among common bean landraces of Mesoamerican origin based on Correspondence Analysis of RAPD. Crop Sci 40:264–273

    Article  Google Scholar 

  • Beebe S, Rengifo J, Gaitan E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Article  Google Scholar 

  • Behar DM, Yunusbayev B, Metspalu M, Metspalu E, Rosset S, Parik J, Rootsi S, Chaubey G, Kutuev I, Yudkovsky G, Khusnutdinova EK, Balanovsky O, Semino O, Pereira L, Comas D, Gurwitz D, Bonne-Tamir B, Parfitt T, Hammer MF, Skorecki K, Villems R (2010) The genome-wide structure of the Jewish people. Nature 466:238–242

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitan-Solis E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006a) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006b) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Diaz JM, Hidalgo R, Diaz LM, Duque MC (2007) Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.). Theor Appl Genet 116:29–43

    Article  PubMed  CAS  Google Scholar 

  • Blair M, Diaz LM, Buendia HF, Duque MC (2009) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Chaves A, Tofino A, Calderon JF, Palacio JD (2010a) Extensive diversity and inter-genepool introgression in a world-wide collection of indeterminate snap bean accessions. Theor Appl Genet 120:1381–1391

    Article  PubMed  Google Scholar 

  • Blair MW, Prieto S, Diaz LM, Buendia HF, Cardona C (2010b) Linkage disequilibrium at the APA insecticidal seed protein locus of common bean (Phaseolus vulgaris L.). BMC Plant Biol 10:79

    Google Scholar 

  • Borza T, Higgins B, Simpson G, Bowman S (2010) Integrating the markers Pan I and haemoglobin with the genetic linkage map of Atlantic cod (Gadus morhua). BMC Res Notes 3:261

    Article  PubMed  Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, York TL, Polato NR, Olsen KM, Nielsen R, McCouch SR, Bustamante CD, Purugganan MD (2007) Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 3:1745–1756

    Article  PubMed  CAS  Google Scholar 

  • Camus L, Chevin LM, Cordet CT, Charcosset A, Manicacci D, Tenaillon MI (2008) Patterns of molecular evolution associated with two selective sweeps in the Tb1-Dwarf8 region in maize. Genetics 180:1107–1121

    Article  Google Scholar 

  • Chacón MI, Pickersgill B, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444

    Article  Google Scholar 

  • Chagné D, Batley J, Edwards D, Forster JW (2007) Single nucleotide polymorphism genotyping in plants. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, Silva HNd (eds) Association mapping in plants. Springer, NY, pp 77–94

  • Córdoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MW (2010) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 11:436

    Google Scholar 

  • Cuppen E (2007) Genotyping by allele-specific amplification (KASPar). Cold Spring Harb Protocols, pp 172–173

  • David P, Sevignac M, Thareau V, Catillon Y, Kami J, Gepts P, Langin T, Geffroy V (2008) BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses. Mol Genet Genomics 280:521–533

    Article  PubMed  CAS  Google Scholar 

  • Díaz LM, Blair MW (2006) Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theor Appl Genet 114:143–154

    Google Scholar 

  • Fay JC, Wu CI (1999) A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Mol Biol Evol 16:1003–1005

    PubMed  CAS  Google Scholar 

  • Felsenstein J (2006) Inferring phylogenies. Sinauer Associates, New York

    Google Scholar 

  • Freyre R, Skroch P, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson W, Llaca V, Nodari R, Pereira P, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos CE, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core map andalignment of RFLP maps. Theor Appl Genet 97:847–956

    Article  CAS  Google Scholar 

  • Gaitan E, Choi IY, Quigley C, Cregan P, Tohme J (2008) Single nucleotide polymorphisms in common bean: their discovery and genotyping using a multiplex detection system. Plant Genome 1:125–134

    Article  Google Scholar 

  • Galeano CH, Fernandez AC, Gomez M, Blair MW (2009a) Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC Genomics 10:629

    Google Scholar 

  • Galeano CH, Gomez M, Rodriguez LM, Blair MW (2009b) CEL I nuclease digestion for SNP discovery and marker development in common bean (Phaseolus vulgaris L.). Crop Sci 49:381–394

    Article  CAS  Google Scholar 

  • Gepts P (1998) Origin and evolution of common bean: past events and recent trends. HortScience 33:1119–1135

    Google Scholar 

  • Gepts P, Debouck DG (1991) Origin, domestication, and evolution of the common bean. In: van Schoonhaven A, Voysest O (eds) Common beans: research for crop improvement. Centro Internacional de Agricultura Tropical (CIAT), Cali

  • Gepts P, Osborn TC, Rashka K, Bliss FA (1986) Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ Bot 40:451–468

    Article  CAS  Google Scholar 

  • Hair JF, Anderson RE, Tatham RL, Black WC (1992) Multivariate data analysis with readings. Macmillan Publishing Company, New York

    Google Scholar 

  • Hougaard BK, Madsen LH, Sandal N, Moretzsohn MC, Fredslund J, Schauser L, Nielsen AM, Rohde T, Sato S, Tabata S, Bertioli DJ, Stougaard JF (2008) Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics 119:2299–2312

    Article  Google Scholar 

  • Hyten DL, Cannon SB, Song QJ, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, May GD, Cregan PB (2010a) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38

    Google Scholar 

  • Hyten DL, Song Q, Fickus EW, Quigley CV, Lim J-S, Choi I-Y, Hwang E-Y, Pastor-Corrales M, Cregan PB (2010b) High-throughput SNP discovery and assay development in common bean. BMC Genomics 11:475

  • Ioannidis J, Thomas G, Daly MJ (2009) Validating, augmenting and refining genome-wide association signals. Nat Rev Genet 10:319–329

    Article  Google Scholar 

  • Jorgenson E, Witte JS (2007) Microsatellite markers for genome-wide association studies. Nat Rev Genet 8

  • Koopman WJM, Li Y, Coart E, Weg WEVD, Vosman B, Roldán-Ruiz I, Smulders MJM (2007) Linked vs. unlinked markers: multilocus microsatellite haplotype-sharing as a tool to estimate gene flow and introgression. Mol Ecol 16:243–256

    Article  PubMed  CAS  Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    Article  PubMed  CAS  Google Scholar 

  • Kwak M, Kami JA, Gepts P (2009) The putative mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma-Santiago Basin of Mexico. Crop Sci 49:554–563

    Article  Google Scholar 

  • Liu S, Zhou Z, Lu J, Sun F, Wang S, Liu H, Jiang Y, Kucuktas H, Kaltenboeck L, Peatman E, Liu Z (2011) Generation of genome-scale gene-associated SNPs in catfish for the construction of a high-density SNP array. BMC Genomics 12:53

    Article  PubMed  CAS  Google Scholar 

  • Makunde GS, Beebe S, Blair MW, Chirwa R, Lungu D (2007) Inheritance of drought tolerance traits in Andean × Andean and Andean × Mesoamerican F2 Populations. Bean Improv Coop 50:159–160

    Google Scholar 

  • McConnell M, Mamidi S, Lee R, Chikara S, Rossi M, Papa R, McClean P (2010) Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). Theor Appl Genet 121:1103–1116

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • Nijman IJ, Kuipers S, Verheul M, Guryev V, Cuppen E (2008) A genome-wide SNP panel for mapping and association studies in the rat. BMC Genomics 9:95

    Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Ramirez M, Graham MA, Blanco-Lopez L, Silvente S, Medrano-Soto A, Blair MW, Hernandez G, Vance CP, Lara M (2005) Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 137:1211–1227

    Article  PubMed  CAS  Google Scholar 

  • Reagon M, Thurber CS, Gross BL, Olsen KM, Jia YL, Caicedo AL (2010) Genomic patterns of nucleotide diversity in divergent populations of US weedy rice. BMC Evol Biol 10:180

    Google Scholar 

  • Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615

    Article  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schoonhoven Av, Voysest O (1991) Common beans: research for crop improvement. Centro Internacional de Agricultura Tropical, Cali

    Google Scholar 

  • Singh SP (1982) A key for identification of different growth habits of Phaseolus vulgaris L. Bean Improv Coop 25:92–95

    Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396

    Article  Google Scholar 

  • Sonnante G, Stockton T, Nodari R, Becerra Velasquez V, Gepts P (1994) Evolution of genetic diversity during the domestication of common bean (Phaseolus vulgaris L.). Theor Appl Genet 89:629–635

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tohme J, González O, Beebe S, Duque MC (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384

    Article  CAS  Google Scholar 

  • Wakeley J (2008) Coalescent theory: an introduction. Harvard University, Cambridge

    Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations, volume 2: the theory of gene frequencies. University of Chicago Press, Chicago

    Google Scholar 

  • Xia H, Camus-Kulandaivelu LT, Stephan W, Tellier AL, Zhang Z (2010) Nucleotide diversity patterns of local adaptation at drought-related candidate genes in wild tomatoes. Mol Ecol (online version)

  • Yan JB, Yang XH, Shah T, Sanchez-Villeda H, Li JS, Warburton M, Zhou Y, Crouch JH, Xu YB (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451

    Article  CAS  Google Scholar 

  • Zhao KY, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Ali ML, Tung CW, Reynolds A, Bustamante CD, McCouch SR (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. Plos One 5:e10780

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the personnel of the Genetic Resource Unit and Bean Programs for seed multiplication. In particular, we are grateful with L. Díaz and A. Hoyos for providing us with the SSR data and passport information, respectively, and with V.M. Mayor for facilitating DNA of drought tolerance lines. We also acknowledge the KBioscience Center for support in SNP genotyping, are grateful to S. Madriñán for advice and analytical support and to the anonymous reviewers for their valuable comments. This research was supported by the Tropical Legume I project of the Generation Challenge Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Blair.

Additional information

Communicated by A. Schulman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental table 1 (DOC 96 kb)

122_2011_1630_MOESM2_ESM.ppt

Supplemental figure 1. Allele frequency for 94 SNP (84 gene-based and 10 non-genic) markers organized according to their polymorphism information content (PIC) (PPT 119 kb)

122_2011_1630_MOESM3_ESM.ppt

Supplemental figure 2. Nucleotide diversity (pairwise differences) for each SNP marker along the 70 common bean accessions. Non-genic and Dreb2 SNPs are indicated. The first 81 SNPs are EST-based (PPT 109 kb)

122_2011_1630_MOESM4_ESM.ppt

Supplemental figure 3. Comparison of pairwise differences between all possible combinations of accessions for SNP and SSR markers. Subfigure a) considers intra and inter-genepool comparisons. Subfigure b) only considers intra-genepool comparisons. The most likelihood equation is presented in each case. SSR markers from Blair et al. (2006a, b) (PPT 637 kb)

122_2011_1630_MOESM5_ESM.pdf

Supplemental figure 4. Principal component analysis (PCoA) for 70 common bean accessions based on 94 SNP markers and considering genepool structure. Subfigure a) shows the Andean genepool; subfigure b) shows the Mesoamerican genepool. Accession names are shown for cases where introgression is recognizable (PDF 232 kb)

122_2011_1630_MOESM6_ESM.pdf

Supplemental figure 5. Structure analysis from K = 2 to K = 3 presented for a) the Andean and b) the Mesoamerican gene pools independently with sub-group abbreviations as D-J (Durango–Jalisco complex), G (race Guatemala) M1, M2 (race Mesoamerica subgroups); NG1, NG2 (race Nueva Granada subgroups) and P (race Peru). Arrows show cases of inter gene pool introgression detailed in the PCoA analysis (PDF 155 kb)

122_2011_1630_MOESM7_ESM.pdf

Supplemental figure 6. Level of polymorphism in hypothetical parental combinations. Red scale and distribution: pairwise differences between any two accessions. Green scale and distribution: level of heterozygosity for each accession. Discontinuous black lines at margins divide Andean (upper-left) and Mesoamerican (lower-right) gene pools. Accessions are organized according to the PCoA analysis (PDF 127 kb)

122_2011_1630_MOESM8_ESM.pdf

Supplemental figure 7. Permutation tests comparing a) the Andean and the Mesoamerican uniqueness and b) the Andean and Mesoamerican intra-genepool diversity. 10000 iterations were considered. The t for unequal sample sizes and variances was used as test statistic. Box-plot diagrams are shown in the insets (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés, A.J., Chavarro, M.C. & Blair, M.W. SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123, 827–845 (2011). https://doi.org/10.1007/s00122-011-1630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1630-8

Keywords

Navigation