Skip to main content

Advertisement

Log in

The Roles of Hypoxia-Inducible Factors in Regulating Neural Stem Cells Migration to Glioma Stem Cells and Determinating Their Fates

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The mortality of patients with malignant gliomas remains high despite the advancement in multi-modal therapy including surgery, radio- and chemotherapy. Glioma stem cells (GSCs), sharing some characteristics with normal neural stem cells (NSCs), contribute to the cellular origin for primary gliomas and the recurrence of malignant gliomas after current conventional therapy. Accordingly, targeting GSCs proves to be a promising avenue of therapeutic intervention. The specific tropism of NSCs to GSCs provides a novel platform for targeted delivery of therapeutic agents. Tropism and mobilization of NSCs are enhanced by hypoxia through upregulating chemotactic cytokines and activating several signaling pathways. Moreover, hypoxia-inducible factors (HIFs) produced under hypoxic microenvironment of the stem cell niche play critical roles in the growth and stemness phenotypes regulation of both NSCs and GSCs. However, the definite cellular and molecular mechanisms of HIFs involvement in the process remain obscure. In this review, we focus on the pivotal roles of HIFs in migration of NSCs to GSCs and potential roles of HIFs in dictating the fates of migrated NSCs and targeted GSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60(3):166–193

    Article  PubMed  Google Scholar 

  2. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021

    Article  PubMed  CAS  Google Scholar 

  3. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  PubMed  CAS  Google Scholar 

  4. Yuan X, Curtin J, Xiong Y et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23(58):9392–9400

    Article  PubMed  CAS  Google Scholar 

  5. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  PubMed  CAS  Google Scholar 

  6. Eramo A, Ricci-Vitiani L, Zeuner A et al (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13(7):1238–1241

    Article  PubMed  CAS  Google Scholar 

  7. Campos B, Wan F, Farhadi M et al (2010) Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res 16(10):2715–2728

    Article  PubMed  CAS  Google Scholar 

  8. Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H (2008) Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 26(7):1818–1830

    Article  PubMed  Google Scholar 

  9. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20):3274–3284

    Article  PubMed  CAS  Google Scholar 

  10. Li Z, Bao S, Wu Q et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513

    Article  PubMed  CAS  Google Scholar 

  11. McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ (2009) Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 7(4):489–497

    Article  PubMed  CAS  Google Scholar 

  12. Soeda A, Park M, Lee D et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28(45):3949–3959

    Article  PubMed  CAS  Google Scholar 

  13. Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177(3):1491–1502

    Article  PubMed  CAS  Google Scholar 

  14. Seidel S, Garvalov BK, Wirta V et al (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133(Pt 4):983–995

    Article  PubMed  Google Scholar 

  15. Platet N, Liu SY, Atifi ME et al (2007) Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett 258(2):286–290

    Article  PubMed  CAS  Google Scholar 

  16. Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: roleof reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441

    Article  PubMed  CAS  Google Scholar 

  17. Blazek ER, Foutch JL, Maki G (2007) Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133 + sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys 67(1):1–5

    Article  PubMed  CAS  Google Scholar 

  18. Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67(19):8980–8984

    Article  PubMed  CAS  Google Scholar 

  19. Sheehan JP, Shaffrey ME, Gupta B, Larner J, Rich JN, Park DM (2010) Improving the radiosensitivity of radioresistant and hypoxic glioblastoma. Future Oncol 6(10):1591–1601

    Article  PubMed  CAS  Google Scholar 

  20. Liang BC (1996) Effects of hypoxia on drug resistance phenotype and genotype in human glioma cell lines. J Neurooncol 29(2):149–155

    Article  PubMed  CAS  Google Scholar 

  21. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62(12):3387–3394

    PubMed  CAS  Google Scholar 

  22. Zhang W, Zhang H (2006) Hypoxia-inducible factor-1alpha suppressing apoptosis and increasing tolerance of lung cancer cells to chemotherapy. J Huazhong Univ Sci Technolog Med Sci 26(5):520–523

    Article  PubMed  CAS  Google Scholar 

  23. Kolenda J, Jensen SS, Aaberg-Jessen C et al (2011) Effects of hypoxia on expression of a panel of stem cell and chemoresistance markers in glioblastoma-derived spheroids. J Neurooncol 103(1):43–58

    Article  PubMed  CAS  Google Scholar 

  24. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  PubMed  CAS  Google Scholar 

  25. Cairns RA, Papandreou I, Sutphin PD, Denko NC (2007) Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci USA 104(22):9445–9450

    Article  PubMed  CAS  Google Scholar 

  26. Gillespie DL, Whang K, Ragel BT, Flynn JR, Kelly DA, Jensen RL (2007) Silencing of hypoxia inducible factor-1alpha by RNA interference attenuates humanglioma cell growth in vivo. Clin Cancer Res 13(8):2441–2448

    Article  PubMed  CAS  Google Scholar 

  27. Mendez O, Zavadil J, Esencay M et al (2010) Knock down of HIF-1alpha in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Mol Cancer 9:133

    Article  PubMed  Google Scholar 

  28. Staflin K, Honeth G, Kalliomaki S, Kjellman C, Edvardsen K, Lindvall M (2004) Neural progenitor cell lines inhibit rat tumor growth in vivo. Cancer Res 64(15):5347–5354

    Article  PubMed  CAS  Google Scholar 

  29. Glass R, Synowitz M, Kronenberg G et al (2005) Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci 25(10):2637–2646

    Article  PubMed  CAS  Google Scholar 

  30. Luo J, Zhang L, Tu H et al (2007) Experimental study on treatment of glioma by embryonic neural stem cell transplantation in rats. J Huazhong Univ Sci Technolog Med Sci 27(5):571–575

    Article  PubMed  Google Scholar 

  31. Tyler MA, Ulasov IV, Sonabend AM et al (2009) Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Ther 16(2):262–278

    Article  PubMed  CAS  Google Scholar 

  32. Kim SU (2011) Neural stem cell-based gene therapy for brain tumors. Stem Cell Rev 7(1):130–140

    Article  PubMed  CAS  Google Scholar 

  33. Xu Q, Wang S, Jiang X et al (2007) Hypoxia-induced astrocytes promote the migration of neural progenitor cells via vascular endothelial factor, stem cell factor, stromal-derived factor-1alpha and monocyte chemoattractant protein-1 upregulation in vitro. Clin Exp Pharmacol Physiol 34(7):624–631

    Article  PubMed  CAS  Google Scholar 

  34. Rosova I, Dao M, Capoccia B, Link D, Nolta JA (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26(8):2173–2182

    Article  PubMed  CAS  Google Scholar 

  35. Liu H, Xue W, Ge G et al (2010) Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs. Biochem Biophys Res Commun 401(4):509–515

    Article  PubMed  CAS  Google Scholar 

  36. Lee SH, Lee YJ, Han HJ (2011) Role of hypoxia-induced fibronectin-integrin beta1 expression in embryonic stem cell proliferation and migration: involvement of PI3 K/Akt and FAK. J Cell Physiol 226(2):484–493

    Article  PubMed  CAS  Google Scholar 

  37. Raheja LF, Genetos DC, Wong A, Yellowley CE (2011) Hypoxic regulation of mesenchymal stem cell migration: the role of RhoA and HIF-1alpha. Cell Biol Int 35(10):981–989

    Article  PubMed  CAS  Google Scholar 

  38. Zhao D, Najbauer J, Garcia E et al (2008) Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol Cancer Res 6(12):1819–1829

    Article  PubMed  CAS  Google Scholar 

  39. Ingraham CA, Park GC, Makarenkova HP, Crossin KL (2011) Matrix metalloproteinase (MMP)-9 induced by Wnt signaling increases the proliferation and migration of embryonic neural stem cells at low O2 levels. J Biol Chem 286(20):17649–17657

    Article  PubMed  CAS  Google Scholar 

  40. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  PubMed  CAS  Google Scholar 

  41. Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472

    Article  PubMed  CAS  Google Scholar 

  42. Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443

    Article  PubMed  CAS  Google Scholar 

  43. Schioppa T, Uranchimeg B, Saccani A et al (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198(9):1391–1402

    Article  PubMed  CAS  Google Scholar 

  44. Piovan E, Tosello V, Indraccolo S et al (2007) Differential regulation of hypoxia-induced CXCR4 triggering during B-celldevelopment and lymphomagenesis. Cancer Res 67(18):8605–8614

    Article  PubMed  CAS  Google Scholar 

  45. Wang X, Li C, Chen Y et al (2008) Hypoxia enhances CXCR4 expression favoring microglia migration via HIF-1alphaactivation. Biochem Biophys Res Commun 371(2):283–288

    Article  PubMed  CAS  Google Scholar 

  46. Kubo M, Li TS, Kamota T, Ohshima M, Qin SL, Hamano K (2009) Increased expression of CXCR4 and integrin alphaM in hypoxia-preconditioned cellscontributes to improved cell retention and angiogenic potency. J Cell Physiol 220(2):508–514

    Article  PubMed  CAS  Google Scholar 

  47. Cronin PA, Wang JH, Redmond HP (2010) Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4. BMC Cancer 10:225

    Article  PubMed  Google Scholar 

  48. Raval RR, Lau KW, Tran MG et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25(13):5675–5686

    Article  PubMed  CAS  Google Scholar 

  49. Freed CR, Breeze RE, Rosenberg NL et al (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 327(22):1549–1555

    Article  PubMed  CAS  Google Scholar 

  50. Spencer DD, Robbins RJ, Naftolin F et al (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N Engl J Med 327(22):1541–1548

    Article  PubMed  CAS  Google Scholar 

  51. Baetge EE (1993) Neural stem cells for CNS transplantation. Ann N Y Acad Sci 695:285–291

    Article  PubMed  CAS  Google Scholar 

  52. Armstrong RJ, Svendsen CN (2000) Neural stem cells: from cell biology to cell replacement. Cell Transplant 9(2):139–152

    PubMed  CAS  Google Scholar 

  53. Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117

    Article  PubMed  CAS  Google Scholar 

  54. Imitola J, Raddassi K, Park KI et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101(52):18117–18122

    Article  PubMed  CAS  Google Scholar 

  55. Zhu J, Zhou L, XingWu F (2006) Tracking neural stem cells in patients with brain trauma. N Engl J Med 355(22):2376–2378

    Article  PubMed  CAS  Google Scholar 

  56. Carbajal KS, Schaumburg C, Strieter R, Kane J, Lane TE (2010) Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc Natl Acad Sci USA 107(24):11068–11073

    Article  PubMed  CAS  Google Scholar 

  57. Aboody KS, Brown A, Rainov NG et al (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97(23):12846–12851

    Article  PubMed  CAS  Google Scholar 

  58. Benedetti S, Pirola B, Pollo B et al (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6(4):447–450

    Article  PubMed  CAS  Google Scholar 

  59. Herrlinger U, Woiciechowski C, Sena-Esteves M et al (2000) Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol Ther 1(4):347–357

    Article  PubMed  CAS  Google Scholar 

  60. Yip S, Sabetrasekh R, Sidman RL, Snyder EY (2006) Neural stem cells as novel cancer therapeutic vehicles. Eur J Cancer 42(9):1298–1308

    Article  PubMed  CAS  Google Scholar 

  61. Aboody KS, Najbauer J, Danks MK (2008) Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 15(10):739–752

    Article  PubMed  CAS  Google Scholar 

  62. Ahmed AU, Alexiades NG, Lesniak MS (2010) The use of neural stem cells in cancer gene therapy: predicting the path to the clinic. Curr Opin Mol Ther 12(5):546–552

    PubMed  CAS  Google Scholar 

  63. Hung SC, Pochampally RR, Hsu SC et al (2007) Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS ONE 2(5):e416

    Article  PubMed  Google Scholar 

  64. Wang Y, Deng Y, Zhou GQ (2008) SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 1195:104–112

    Article  PubMed  CAS  Google Scholar 

  65. Tang YL, Zhu W, Cheng M et al (2009) Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 104(10):1209–1216

    Article  PubMed  CAS  Google Scholar 

  66. Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864

    Article  PubMed  CAS  Google Scholar 

  67. Chang YC, Shyu WC, Lin SZ, Li H (2007) Regenerative therapy for stroke. Cell Transplant 16(2):171–181

    PubMed  Google Scholar 

  68. Schmidt NO, Przylecki W, Yang W et al (2005) Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7(6):623–629

    Article  PubMed  CAS  Google Scholar 

  69. Zhang X, Gaspard JP, Chung DC (2001) Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 61(16):6050–6054

    PubMed  CAS  Google Scholar 

  70. Wu B, Crampton SP, Hughes CC (2007) Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26(2):227–239

    Article  PubMed  CAS  Google Scholar 

  71. Mazumdar J, O’Brien WT, Johnson RS et al (2010) O2 regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12(10):1007–1013

    Article  PubMed  CAS  Google Scholar 

  72. Lamszus K, Lengler U, Schmidt NO, Stavrou D, Ergun S, Westphal M (2000) Vascular endothelial growth factor, hepatocyte growth factor/scatter factor, basic fibroblast growth factor, and placenta growth factor in human meningiomas and their relation to angiogenesis and malignancy. Neurosurgery 46(4):938–947 (Discussion 947–948)

    PubMed  CAS  Google Scholar 

  73. Horie N, So K, Moriya T et al (2008) Effects of oxygen concentration on the proliferation and differentiation of mouse neural stem cells in vitro. Cell Mol Neurobiol 28(6):833–845

    Article  PubMed  CAS  Google Scholar 

  74. Zhao T, Zhang CP, Liu ZH et al (2008) Hypoxia-driven proliferation of embryonic neural stem/progenitor cells–role of hypoxia-inducible transcription factor-1alpha. FEBS J 275(8):1824–1834

    Article  PubMed  CAS  Google Scholar 

  75. Clarke L (2009) v. Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells 27(8):1879–1886

    Article  PubMed  CAS  Google Scholar 

  76. Panchision DM (2009) The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 220(3):562–568

    Article  PubMed  CAS  Google Scholar 

  77. Chen X, Tian Y, Yao L, Zhang J, Liu Y (2010) Hypoxia stimulates proliferation of rat neural stem cells with influence on the expression of cyclin D1 and c-Jun N-terminal protein kinase signaling pathway in vitro. Neuroscience 165(3):705–714

    Article  PubMed  CAS  Google Scholar 

  78. De Filippis L, Delia D (2011) Hypoxia in the regulation of neural stem cells. Cell Mol Life Sci 68(17):2831–2844

    Article  PubMed  CAS  Google Scholar 

  79. Lian JH, Pennant WA, Hyung LM et al (2011) Neural stem cells modified by a hypoxia-inducible VEGF gene expression system improve cell viability under hypoxic conditions and spinal cord injury. Spine (Phila Pa 1976) 36(11):857–864

    Article  Google Scholar 

  80. Studer L, Csete M, Lee SH et al (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20(19):7377–7383

    PubMed  CAS  Google Scholar 

  81. Zhang CP, Zhu LL, Zhao T et al (2006) Characteristics of neural stem cells expanded in lowered oxygen and the potential role of hypoxia-inducible factor-1Alpha. Neurosignals 15(5):259–265

    Article  PubMed  CAS  Google Scholar 

  82. Santilli G, Lamorte G, Carlessi L et al (2010) Mild hypoxia enhances proliferation and multipotency of human neural stem cells. PLoS ONE 5(1):e8575

    Article  PubMed  Google Scholar 

  83. Pistollato F, Chen HL, Schwartz PH, Basso G, Panchision DM (2007) Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol Cell Neurosci 35(3):424–435

    Article  PubMed  CAS  Google Scholar 

  84. Gustafsson MV, Zheng X, Pereira T et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628

    Article  PubMed  CAS  Google Scholar 

  85. Pistollato F, Rampazzo E, Persano L et al (2010) Interaction of hypoxia-inducible factor-1alpha and Notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 28(11):1918–1929

    Article  PubMed  CAS  Google Scholar 

  86. Mukherjee T, Kim WS, Mandal L, Banerjee U (2011) Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332(6034):1210–1213

    Article  PubMed  CAS  Google Scholar 

  87. Takeuchi H, Natsume A, Wakabayashi T et al (2007) Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 426(2):69–74

    Article  PubMed  CAS  Google Scholar 

  88. Fujiwara Y, Tanaka N, Ishida O et al (2004) Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci Lett 366(3):287–291

    Article  PubMed  CAS  Google Scholar 

  89. Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6(6):425–436

    Article  PubMed  CAS  Google Scholar 

  90. Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    Article  PubMed  CAS  Google Scholar 

  91. Fine HA (2009) Glioma stem cells: not all created equal. Cancer Cell 15(4):247–249

    Article  PubMed  CAS  Google Scholar 

  92. Alcantara LSR, Chen Y, McKay RM, Parada LF (2011) Stem cells in brain tumor development. Curr Top Dev Biol 94:15–44

    Article  Google Scholar 

  93. Gillespie DL, Whang K, Ragel BT, Flynn JR, Kelly DA, Jensen RL (2007) Silencing of hypoxia inducible factor-1alpha by RNA interference attenuates human glioma cell growth in vivo. Clin Cancer Res 13(8):2441–2448

    Article  PubMed  CAS  Google Scholar 

  94. Pietras A, Johnsson AS, Pahlman S (2010) The HIF-2alpha-driven pseudo-hypoxic phenotype in tumor aggressiveness, differentiation, and vascularization. Curr Top Microbiol Immunol 345:1–20

    Article  PubMed  CAS  Google Scholar 

  95. Covello KL, Kehler J, Yu H et al (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20(5):557–570

    Article  PubMed  CAS  Google Scholar 

  96. Loboda A, Jozkowicz A, Dulak J (2010) HIF-1 and HIF-2 transcription factors–similar but not identical. Mol Cells 29(5):435–442

    Article  PubMed  CAS  Google Scholar 

  97. Bar EE (2011) Glioblastoma, cancer stem cells and hypoxia. Brain Pathol 21(2):119–129

    Article  PubMed  Google Scholar 

  98. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11(4):335–347

    Article  PubMed  CAS  Google Scholar 

  99. Krishnamurthy P, Ross DD, Nakanishi T et al (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279(23):24218–24225

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Luo, X., Wan, F. et al. The Roles of Hypoxia-Inducible Factors in Regulating Neural Stem Cells Migration to Glioma Stem Cells and Determinating Their Fates. Neurochem Res 37, 2659–2666 (2012). https://doi.org/10.1007/s11064-012-0879-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0879-x

Keywords

Navigation