Skip to main content
Log in

HIF-1 and HIF-2 transcription factors — Similar but not identical

  • Minireview
  • Published:
Molecules and Cells

Abstract

Hypoxia inducible factor (HIF)-1 and HIF-2 are heterodimeric transcription factors mediating the cellular response to hypoxia. Recent data indicate that not only ubiquitous HIF-1α, but also more cell-specific HIF-2α, is an important regulator of the hypoxia response. Although both α subunits are highly conservative at protein level, share similar domain structure, heterodimerize with HIF-1β, and bind to the same DNA sequence called hypoxia responsive element (HRE), their effect on the expression of some genes may vary. In this review we stressed the differences between the isoforms, their structure and expression pattern. Moreover, we described diversity of coactivators and proteins which interact with HIFs, and which are responsible for the specificity of their action. Finally, recent data showing link between HIFs and specific microRNA have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appelhoff, R.J., Tian, Y.M., Raval, R.R., Turley, H., Harris, A.L., Pugh, C.W., Ratcliffe, P.J., and Gleadle, J.M. (2004). Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 279, 38458–38465.

    Article  CAS  PubMed  Google Scholar 

  • Aprelikova, O., Wood, M., Tackett, S., Chandramouli, G.V., and Barrett, J.C. (2006). Role of ETS transcription factors in the hypoxia-inducible factor-2 target gene selection. Cancer Res. 66, 5641–5647.

    Article  CAS  PubMed  Google Scholar 

  • Arany, Z., Huang, L.E., Eckner, R., Bhattacharya, S., Jiang, C., Goldberg, M.A., Bunn, H.F., and Livingston, D.M. (1996). An essential role for p300/CBP in the cellular response to hypoxia. Proc. Natl. Acad. Sci. USA 93, 12969–12973.

    Article  CAS  PubMed  Google Scholar 

  • Bae, M.K., Ahn, M.Y., Jeong, J.W., Bae, M.H., Lee, Y.M., Bae, S.K., Park, J.W., Kim, K.R., and Kim, K.W. (2002). Jab1 interacts directly with HIF-1alpha and regulates its stability. J. Biol. Chem. 277, 9–12.

    Article  CAS  PubMed  Google Scholar 

  • Bae, S.H., Jeong, J.W., Park, J.A., Kim, S.H., Bae, M.K., Choi, S.J., and Kim, K.W. (2004). Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem. Biophys. Res. Commun. 324, 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D., and Pouyssegur, J. (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22, 4082–4090.

    Article  CAS  PubMed  Google Scholar 

  • Berta, M.A., Mazure, N., Hattab, M., Pouyssegur, J., and Brahimi-Horn, M.C. (2007). SUMOylation of hypoxia-inducible factor-1alpha reduces its transcriptional activity. Biochem. Biophys. Res. Commun. 360, 646–652.

    Article  CAS  PubMed  Google Scholar 

  • Blancher, C., Moore, J.W., Talks, K.L., Houlbrook, S., and Harris, A.L. (2000). Relationship of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res. 60, 7106–7113.

    CAS  PubMed  Google Scholar 

  • Bracken, C.P., Whitelaw, M.L., and Peet, D.J. (2005). Activity of hypoxia-inducible factor 2alpha is regulated by association with the NF-kappaB essential modulator. J. Biol. Chem. 280, 14240–14251.

    Article  CAS  PubMed  Google Scholar 

  • Bruick, R.K., and McKnight, S.L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340.

    Article  CAS  PubMed  Google Scholar 

  • Camps, C., Buffa, F.M., Colella, S., Moore, J., Sotiriou, C., Sheldon, H., Harris, A.L., Gleadle, J.M., and Ragoussis, J. (2008). hsamiR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res. 14, 1340–1348.

    Article  CAS  PubMed  Google Scholar 

  • Carbia-Nagashima, A., Gerez, J., Perez-Castro, C., Paez-Pereda, M., Silberstein, S., Stalla, G.K., Holsboer, F., and Arzt, E. (2007). RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131, 309–323.

    Article  CAS  PubMed  Google Scholar 

  • Carrero, P., Okamoto, K., Coumailleau, P., O’Brien, S., Tanaka, H., and Poellinger, L. (2000). Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol. Cell. Biol. 20, 402–415.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, J., Kang, X., Zhang, S., and Yeh, E.T. (2007). SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131, 584–595.

    Article  CAS  PubMed  Google Scholar 

  • Chilov, D., Camenisch, G., Kvietikova, I., Ziegler, U., Gassmann, M., and Wenger, R.H. (1999). Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha. J. Cell. Sci. 112, 1203–1212.

    CAS  PubMed  Google Scholar 

  • Chin, L., Schreiber-Agus, N., Pellicer, I., Chen, K., Lee, H.W., Dudast, M., Cordon-Cardo, C., and DePinho, R.A. (1995). Contrasting roles for Myc and Mad proteins in cellular growth and differentiation. Proc. Natl. Acad. Sci. USA 92, 8488–8492.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.M., and Park, H. (2009). The novel peptide F29 facilitates the DNA-binding ability of hypoxia-inducible factor-1alpha. BMB Rep. 42, 737–742.

    CAS  PubMed  Google Scholar 

  • Cockman, M.E., Masson, N., Mole, D.R., Jaakkola, P., Chang, G.W., Clifford, S.C., Maher, E.R., Pugh, C.W., Ratcliffe, P.J., and Maxwell, P.H. (2000). Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 275, 25733–25741.

    Article  CAS  PubMed  Google Scholar 

  • Corn, P.G., Ricci, M.S., Scata, K.A., Arsham, A.M., Simon, M.C., Dicker, D.T., and El-Deiry, W.S. (2005). Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc-induced apoptosis. Cancer Biol. Ther. 4, 1285–1294.

    CAS  PubMed  Google Scholar 

  • Covello, K.L., Kehler, J., Yu, H., Gordan, J.D., Arsham, A.M., Hu, C.J., Labosky, P.A., Simon, M.C., and Keith, B. (2006). HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570.

    Article  CAS  PubMed  Google Scholar 

  • Dayan, F., Roux, D., Brahimi-Horn, M.C., Pouyssegur, J., and Mazure, N.M. (2006). The oxygen sensor factor-inhibiting hypoxiainducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res. 66, 3688–3698.

    Article  CAS  PubMed  Google Scholar 

  • Elvert, G., Kappel, A., Heidenreich, R., Englmeier, U., Lanz, S., Acker, T., Rauter, M., Plate, K., Sieweke, M., Breier, G., et al. (2003). Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J. Biol. Chem. 278, 7520–7530.

    Article  CAS  PubMed  Google Scholar 

  • Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O’Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Fang, H.Y., Hughes, R., Murdoch, C., Coffelt, S.B., Biswas, S.K., Harris, A.L., Johnson, R.S., Imityaz, H.Z., Simon, M.C., Fredlund, E., et al. (2009). Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114, 844–859.

    Article  CAS  PubMed  Google Scholar 

  • Fasanaro, P., Greco, S., Lorenzi, M., Pescatori, M., Brioschi, M., Kulshreshtha, R., Banfi, C., Stubbs, A., Calin, G.A., Ivan, M., et al. (2009). An integrated approach for experimental target identification of hypoxia-induced miR-210. J. Biol. Chem. 284, 35134–35143.

    Article  CAS  PubMed  Google Scholar 

  • Gong, P., Stewart, D., Hu, B., Li, N., Cook, J., Nel, A., and Alam, J. (2002). Activation of the mouse heme oxygenase-1 gene by 15-deoxy-Delta(12,14)-prostaglandin J(2) is mediated by the stress response elements and transcription factor Nrf2. Antioxid. Redox Signal. 4, 249–257.

    Article  CAS  PubMed  Google Scholar 

  • Gordan, J.D., Bertout, J.A., Hu, C.J., Diehl, J.A., and Simon, M.C. (2007). HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335–347.

    Article  CAS  PubMed  Google Scholar 

  • Grandori, C., Cowley, S.M., James, L.P., and Eisenman, R.N. (2000). The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699.

    Article  CAS  PubMed  Google Scholar 

  • Holmquist-Mengelbier, L., Fredlund, E., Lofstedt, T., Noguera, R., Navarro, S., Nilsson, H., Pietras, A., Vallon-Christersson, J., Borg, A., Gradin, K., et al. (2006). Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10, 413–423.

    Article  CAS  PubMed  Google Scholar 

  • Hu, C.J., Wang, L.Y., Chodosh, L.A., Keith, B., and Simon, M.C. (2003). Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol. Cell. Biol. 23, 9361–9374.

    Article  CAS  PubMed  Google Scholar 

  • Hu, C.J., Sataur, A., Wang, L., Chen, H., and Simon, M.C. (2007). The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol. Biol. Cell. 18, 4528–4542.

    Article  CAS  PubMed  Google Scholar 

  • Hua, Z., Lv, Q., Ye, W., Wong, C.K., Cai, G., Gu, D., Ji, Y., Zhao, C., Wang, J., Yang, B.B., et al. (2006). MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1, e116.

    Article  PubMed  Google Scholar 

  • Huang, L.E., and Bunn, H.F. (2003). Hypoxia-inducible factor and its biomedical relevance. J. Biol. Chem. 278, 19575–19578.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L.E., Arany, Z., Livingston, D.M., and Bunn, H.F. (1996). Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J. Biol. Chem. 271, 32253–32259.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Ding, L., Bennewith, K.L., Tong, R.T., Welford, S.M., Ang, K.K., Story, M., Le, Q.T., and Giaccia, A.J. (2009). Hypoxiainducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol. Cell 35, 856–867.

    Article  CAS  PubMed  Google Scholar 

  • Hur, E., Chang, K.Y., Lee, E., Lee, S.K., and Park, H. (2001). Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA binding ability of hypoxia-inducible factor-1alpha. Mol. Pharmacol. 59, 1216–1224.

    CAS  PubMed  Google Scholar 

  • Khurana, A., Nakayama, K., Williams, S., Davis, R.J., Mustelin, T., and Ronai, Z. (2006). Regulation of the ring finger E3 ligase Siah2 by p38 MAPK. J. Biol. Chem. 281, 35316–35326.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.W., Gao, P., Liu, Y.C., Semenza, G.L., and Dang, C.V. (2007). Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381–7393.

    Article  CAS  PubMed  Google Scholar 

  • Koh, M.Y., Darnay, B.G., and Powis, G. (2008). Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation. Mol. Cell. Biol. 28, 7081–7095.

    Article  CAS  PubMed  Google Scholar 

  • Kondo, K., Kim, W.Y., Lechpammer, M., and Kaelin, W.G., Jr. (2003). Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83.

    Article  PubMed  Google Scholar 

  • Kushibiki, T. (2009). Photodynamic therapy induces microRNA-210 and -296 expression in HeLa cells. J. Biophotonics.

  • Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L., and Bruick, R.K. (2002). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471.

    Article  CAS  PubMed  Google Scholar 

  • Lei, Z., Li, B., Yang, Z., Fang, H., Zhang, G.M., Feng, Z.H., and Huang, B. (2009). Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One 4, e7629.

    Article  PubMed  Google Scholar 

  • Liu, Y.V., Baek, J.H., Zhang, H., Diez, R., Cole, R.N., and Semenza, G.L. (2007a). RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol. Cell 25, 207–217.

    Article  PubMed  Google Scholar 

  • Liu, Y.V., Hubbi, M.E., Pan, F., McDonald, K.R., Mansharamani, M., Cole, R.N., Liu, J.O., and Semenza, G.L. (2007b). Calcineurin promotes hypoxia-inducible factor 1alpha expression by dephosphorylating RACK1 and blocking RACK1 dimerization. J. Biol. Chem. 282, 37064–37073.

    Article  CAS  PubMed  Google Scholar 

  • Loboda, A., Stachurska, A., Dorosz, J., Zurawski, M., Wegrzyn, J., Kozakowska, M., Jozkowicz, A., and Dulak, J. (2009a). HIF-1 attenuates Ref-1 expression in endothelial cells: reversal by siRNA and inhibition of geranylgeranylation. Vascul. Pharmacol. 51, 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Loboda, A., Stachurska, A., Florczyk, U., Rudnicka, D., Jazwa, A., Wegrzyn, J., Kozakowska, M., Stalinska, K., Poellinger, L., Levonen, A.L., et al. (2009b). HIF-1 induction attenuates Nrf2-dependent IL-8 expression in human endothelial cells. Antioxid. Redox. Signal. 11, 1501–1517.

    Article  CAS  PubMed  Google Scholar 

  • Lofstedt, T., Fredlund, E., Noguera, R., Navarro, S., Holmquist-Mengelbier, L., Beckman, S., Pahlman, S., and Axelson, H. (2009). HIF-1alpha induces MXI1 by alternate promoter usage in human neuroblastoma cells. Exp. Cell. Res. 315, 1924–1936.

    Article  PubMed  Google Scholar 

  • Luo, W., Zhong, J., Chang, R., Hu, H., Pandey, A., and Semenza, G.L. (2010). HSP70 and CHIP selectively mediate Ubiquitination and degradation of hypoxia-inducible factor (HIF)-1{alpha} but not HIF-2{alpha}. J. Biol. Chem. 285, 3651–3663.

    Article  CAS  PubMed  Google Scholar 

  • Lyberopoulou, A., Venieris, E., Mylonis, I., Chachami, G., Pappas, I., Simos, G., Bonanou, S., and Georgatsou, E. (2007). Mgc-RacGAP interacts with HIF-1alpha and regulates its transcriptional activity. Cell. Physiol. Biochem. 20, 995–1006.

    Article  CAS  PubMed  Google Scholar 

  • Makino, Y., Cao, R., Svensson, K., Bertilsson, G., Asman, M., Tanaka, H., Cao, Y., Berkenstam, A., and Poellinger, L. (2001). Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554.

    Article  CAS  PubMed  Google Scholar 

  • Manalo, D.J., Rowan, A., Lavoie, T., Natarajan, L., Kelly, B.D., Ye, S.Q., Garcia, J.G., and Semenza, G.L. (2005). Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669.

    Article  CAS  PubMed  Google Scholar 

  • Mastrogiannaki, M., Matak, P., Keith, B., Simon, M.C., Vaulont, S., and Peyssonnaux, C. (2009). HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J. Clin. Invest. 119, 1159–1166.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama, K., Frew, I.J., Hagensen, M., Skals, M., Habelhah, H., Bhoumik, A., Kadoya, T., Erdjument-Bromage, H., Tempst, P., Frappell, P.B., et al. (2004). Siah2 regulates stability of prolylhydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 117, 941–952.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama, K., Gazdoiu, S., Abraham, R., Pan, Z.Q., and Ronai, Z. (2007). Hypoxia-induced assembly of prolyl hydroxylase PHD3 into complexes: implications for its activity and susceptibility for degradation by the E3 ligase Siah2. Biochem. J. 401, 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Otterbein, L.E., Soares, M.P., Yamashita, K., and Bach, F.H. (2003). Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24, 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Rankin, E.B., Biju, M.P., Liu, Q., Unger, T.L., Rha, J., Johnson, R.S., Simon, M.C., Keith, B., and Haase, V.H. (2007). Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest. 117, 1068–1077.

    Article  CAS  PubMed  Google Scholar 

  • Raval, R.R., Lau, K.W., Tran, M.G., Sowter, H.M., Mandriota, S.J., Li, J.L., Pugh, C.W., Maxwell, P.H., Harris, A.L., and Ratcliffe, P.J. (2005). Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 25, 5675–5686.

    Article  CAS  PubMed  Google Scholar 

  • Richard, D.E., Berra, E., Gothie, E., Roux, D., and Pouyssegur, J. (1999). p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J. Biol. Chem. 274, 32631–32637.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberger, C., Mandriota, S., Jurgensen, J.S., Wiesener, M.S., Horstrup, J.H., Frei, U., Ratcliffe, P.J., Maxwell, P.H., Bachmann, S., and Eckardt, K.U. (2002). Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J. Am. Soc. Nephrol. 13, 1721–1732.

    Article  CAS  PubMed  Google Scholar 

  • Ruas, J.L., Poellinger, L., and Pereira, T. (2005). Role of CBP in regu-lating HIF-1-mediated activation of transcription. J. Cell Sci. 118, 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G.L., Jiang, B.H., and Leung, S.W., Passantino, R., Concordet, J.P., Maire, P., and Giallongo, A. (1996). Hypoxia res-ponse elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529–32537.

    Article  CAS  PubMed  Google Scholar 

  • Skuli, N., Liu, L., Runge, A., Wang, T., Yuan, L., Patel, S., Iruela-Arispe, L., Simon, M.C., and Keith, B. (2009). Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood 114, 469–477.

    Article  CAS  PubMed  Google Scholar 

  • Sodhi, A., Montaner, S., Patel, V., Zohar, M., Bais, C., Mesri, E.A., and Gutkind, J.S. (2000). The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res. 60, 4873–4880.

    CAS  PubMed  Google Scholar 

  • Sowter, H.M., Raval, R.R., Moore, J.W., Ratcliffe, P.J., and Harris, A.L. (2003). Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res. 63, 6130–6134.

    CAS  PubMed  Google Scholar 

  • Taguchi, A., Yanagisawa, K., Tanaka, M., Cao, K., Matsuyama, Y., Goto, H., and Takahashi, T. (2008). Identification of hypoxiainducible factor-1 alpha as a novel target for miR-17-92 micro-RNA cluster. Cancer Res. 68, 5540–5545.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya, T., Kominato, Y., and Ueda, M. (2002). Human hypoxic signal transduction through a signature motif in hepatocyte nuclear factor 4. J. Biochem. 132, 37–44.

    CAS  PubMed  Google Scholar 

  • van Hagen, M., Overmeer, R.M., Abolvardi, S.S., and Vertegaal, A.C. (2009). RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2{alpha}. Nucleic Acids Res. 1–10.

  • Wang, G.L., Jiang, B.H., Rue, E.A., and Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92, 5510–5514.

    Article  CAS  PubMed  Google Scholar 

  • Wenger, R.H. (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 16, 1151–1162.

    Article  CAS  PubMed  Google Scholar 

  • Wiesener, M.S., Jurgensen, J.S., Rosenberger, C., Scholze, C.K., Horstrup, J.H., Warnecke, C., Mandriota, S., Bechmann, I., Frei, U.A., Pugh, C.W., et al. (2003). Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 17, 271–273.

    CAS  PubMed  Google Scholar 

  • Xanthoudakis, S., and Curran, T. (1992). Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNAbinding activity. EMBO J. 11, 653–665.

    CAS  PubMed  Google Scholar 

  • Yoo, Y.G., Hayashi, M., Christensen, J., and Huang, L.E. (2009). An essential role of the HIF-1alpha-c-Myc axis in malignant progression. Ann. N.Y. Acad. Sci. 1177, 198–204.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, A., Yoshida, S., Khalil, A.K., Ishibashi, T., and Inomata, H. (1998). Role of NF-kappaB-mediated interleukin-8 expression in intraocular neovascularization. Invest. Ophthalmol. Vis. Sci. 39, 1097–1106.

    CAS  PubMed  Google Scholar 

  • Zagorska, A., and Dulak, J. (2004). HIF-1: the knowns and unknowns of hypoxia sensing. Acta Biochim. Pol. 51, 563–585.

    CAS  PubMed  Google Scholar 

  • Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K.I., Dang, C.V., and Semenza, G.L. (2007). HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407–420.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Tsuchiya, T., and Yasukochi, Y. (1999). Transitional change in interaction between HIF-1 and HNF-4 in response to hypoxia. J. Hum. Genet. 44, 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Chen, X., Song, H., Chen, H.Z., and Rovin, B.H. (2005) Activation of the Nrf2/antioxidant response pathway increases IL-8 expression. Eur. J. Immunol. 35, 3258–3267.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Sun, H., Dai, H., Walsh, R.M., Imakura, M., Schelter, J., Burchard, J., Dai, X., Chang, A.N., Diaz, R.L., et al. (2009). MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle 8, 2756–2768.

    CAS  PubMed  Google Scholar 

  • Ziel, K.A., Campbell, C.C., Wilson, G.L., and Gillespie, M.N. (2004). Ref-1/Ape is critical for formation of the hypoxia-inducible transcriptional complex on the hypoxic response element of the rat pulmonary artery endothelial cell VEGF gene. FASEB J. 18, 986–988.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Agnieszka Loboda or Jozef Dulak.

About this article

Cite this article

Loboda, A., Jozkowicz, A. & Dulak, J. HIF-1 and HIF-2 transcription factors — Similar but not identical. Mol Cells 29, 435–442 (2010). https://doi.org/10.1007/s10059-010-0067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0067-2

Keywords

Navigation