Skip to main content

Advertisement

Log in

Neural Stem Cell-based Gene Therapy for Brain Tumors

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Advances in gene-based medicine since 1990s have ushered in new therapeutic strategy of gene therapy for inborn error genetic diseases and cancer. Malignant brain tumors such as glioblastoma multiforme and medulloblastoma remain virtually untreatable and lethal. Currently available treatment for brain tumors including radical surgical resection followed by radiation and chemotherapy, have substantially improved the survival rate in patients suffering from these brain tumors; however, it remains incurable in large proportion of patients. Therefore, there is substantial need for effective, low-toxicity therapies for patients with malignant brain tumors, and gene therapy targeting brain tumors should fulfill this requirement. Gene therapy for brain tumors includes many therapeutic strategies and these strategies can be grouped in two major categories: molecular and immunologic. The widely used molecular gene therapy approach is suicide gene therapy based on the conversion of non-toxic prodrugs into active anticancer agents via introduction of enzymes and genetic immunotherapy involves the gene transfer of immune-stimulating cytokines including IL-4, IL-12 and TRAIL. For both molecular and immune gene therapy, neural stem cells (NSCs) can be used as delivery vehicle of therapeutic genes. NSCs possess an inherent tumor tropism that supports their use as a reliable delivery vehicle to target therapeutic gene products to primary brain tumors and metastatic cancers throughout the brain. Significance of the NSC-based gene therapy for brain tumor is that it is possible to exploit the tumor-tropic property of NSCs to mediate effective, tumor-selective therapy for primary and metastatic cancers in the brain and outside, for which no tolerated curative treatments are currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Black, P. M., & Loeffler, J. (2005). Cancer of the nervous system. Oxford: Blackwell.

    Google Scholar 

  2. Packer, R. J., Cogen, P., Vezina, G., & Rorke, L. B. (1999). Medulloblastoma: clinical and biologic aspects. Neuro-Oncology, 1, 232–250.

    CAS  PubMed  Google Scholar 

  3. Surawicz, T. S., McCarthy, B. J., Kupelian, V., Jukich, P., Bruner, J. M., & Davis, F. G. (1999). Descriptive epidemiology of primary brain and CNS tumors: results from the central brain tumor registry of the United States, 1990–1994. Neuro-Oncology, 1, 14–25.

    CAS  PubMed  Google Scholar 

  4. Rosenberg, R. A., Aebersold, P., Cornetta, K., et al. (1990). Gene transfer into humans – Immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. The New England Journal of Medicine, 323, 570–578.

    CAS  PubMed  Google Scholar 

  5. Blasé, R. M., Culver, K. W., Miller, A. D., et al. (1995). Lymphocyte directed gene therapy for ADA-SCID: initial trial results after 4 years. Science, 270, 475–480.

    Google Scholar 

  6. Edelstein, M. L., Abedi, M. R., & Wixon, J. (2007). Gene therapy clinical trials worldwide to 2007-an update. The Journal of Gene Medicine, 9, 833–842.

    PubMed  Google Scholar 

  7. Brand, K. (2000). Gene therapy for cancer. In N. S. Templeton & D. D. Lasic (Eds.), Gene therapy: Thrapeutic mechanisms and stratagies (pp. 439–472). New York: Dekker.

    Google Scholar 

  8. Helene, C. (1994). Control of oncogene exression by antisense nucleic acids. European Journal of Cancer, 30A, 1721–1726.

    CAS  PubMed  Google Scholar 

  9. Reynolds, A., Anderson, E., Vermeulen, A., et al. (2006). Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA, 12, 988–993.

    CAS  PubMed  Google Scholar 

  10. Mullen, C. A. (1994). Metabolic suicide genes in gene therapy. Pharmacology & Therapeutics, 63, 199–207.

    CAS  Google Scholar 

  11. Shen, Y., & White, E. (2001). p53-dependent apoptosis pathways. Advances in Cancer Research, 82, 55–84.

    CAS  PubMed  Google Scholar 

  12. Opalka, P., Dickcopp, K., & Kirch, H. C. (2002). Apoptotic genes in cancer therapy. Cells, Tissues, Organs, 172, 126–132.

    CAS  PubMed  Google Scholar 

  13. Greenblatt, M. S., Bennett, W. P., Hollstein, M., & Harris, C. C. (1994). Mutations in p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Research, 54, 4855–4878.

    CAS  PubMed  Google Scholar 

  14. Anderson, S. C., Johnson, D. E., Engler, H., et al. (1998). P53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of recombinant adenovirus. Clinical Cancer Research, 4, 1649–1659.

    CAS  PubMed  Google Scholar 

  15. Dolivet, G., Merlin, J. L., Barberi, M., et al. (2002). In vivo growth inhibitory effect of iterative wide-type p53 gene transfer in human head and neck carcinoma xenografts using glucosylated polyethyleneimmine nonviral vector. Cancer Gene Therapy, 9, 708–714.

    CAS  PubMed  Google Scholar 

  16. Swisher, S. G., Roth, J. A., Nemunaitis, J., et al. (1999). Adenovirus-mediated p53 gene transfer in advanced non-small cell lung carcinoma. Journal of the National Cancer Institute, 91, 763–771.

    CAS  PubMed  Google Scholar 

  17. Nemunaitis, J., Swisher, S. G., Timmons, T., et al. (2003). Adenovirus mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. Journal of Clinical Oncology, 18, 495–507.

    Google Scholar 

  18. Swisher, S. G., Roth, J. A., Komaki, R., et al. (2003). Induction of p53-regulated gene and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 2012) and radiation therapy. Clinical Cancer Research, 9, 93–101.

    CAS  PubMed  Google Scholar 

  19. Marcucci, G., Byrd, J. C., Dai, G., et al. (2003). Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood, 101, 425–432.

    CAS  PubMed  Google Scholar 

  20. Potter, M., & Marcu, K. B. (1997). The c-myc story: where we’ve been, where we seem to be going. Current Topics in Microbiology and Immunology, 224, 1–17.

    CAS  PubMed  Google Scholar 

  21. Schrovsky, O. G., Rozados, V. R., Gervasoni, S. I., et al. (2000). Inhibition of ras oncogene: a novel approach to antineoplastic therapy. Journal of Biomedical Science, 7, 292–298.

    Google Scholar 

  22. Helene, C., Thuong, N. T., & Harel-Bellan, A. (1992). Control of gene expression by triple helix-forming oligonucleotides: the antigen strategy. Annals of the New York Academy of Sciences, 660, 27–36.

    CAS  PubMed  Google Scholar 

  23. Fei, R., & Shaoyang, L. (2002). Combination antigene therapy targeting c-myc and c-erbB(2) in the ovarian cancer COC cell line. Gynecologic Oncology, 85, 40–44.

    CAS  PubMed  Google Scholar 

  24. Fire, A., Xu, S., Montgomery, M., et al. (1998). Potent and specific genetic interference by doubl-stranded RNA in C. elegans. Nature, 391, 874–881.

    Google Scholar 

  25. Moolten, F. L., & Wells, J. M. (1990). Curability of tumors bearing hepes simplex thymidine kinase genes transferred by retroviral vectors. Journal of the National Cancer Institute, 82, 297–300.

    CAS  PubMed  Google Scholar 

  26. Kw, C., Ram, Z., Wallbridge, S., et al. (1992). In vivo gene transfer with retroviral vector producing cells for treatment of experimental brain tumors. Science, 256, 1550–1552.

    Google Scholar 

  27. Hamel, W., Magnelli, L., Korsmeyer, S. J., et al. (1996). Hepes simplex thymidine kinase/ ganciclovir-mediated apoptotic cell death of bystander cells. Cancer Research, 56, 2697–2702.

    CAS  PubMed  Google Scholar 

  28. Link, C. J., Levy, J. P., McCann, L. Z., & Moorman, D. W. (1987). Gene therapy for colon cancer with the herpes simplex thymidine kinase gene. Journal of Surgical Oncology, 64, 289–294.

    Google Scholar 

  29. Filat, A. C., Carrio, M., Cascante, A., et al. (2003). Suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene/ ganciclovir system: fifteen years of application. Current Gene Therapy, 3, 13–26.

    Google Scholar 

  30. Freeman, S. M., Abboud, C. N., Whartenby, K. A., et al. (1993). The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Research, 53, 5274–5283.

    CAS  PubMed  Google Scholar 

  31. Huber, B. E., Austin, E. A., Richards, C. A., Davis, S., & Good, S. S. (1994). Metabolism of 5-FC to 5-FU in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proceedings of the National Academy of Sciences of the United States of America, 91, 8302–8306.

    CAS  PubMed  Google Scholar 

  32. Li, Z., Shanmugam, N., Katayose, D., et al. (1997). Enzyme/prodrug gene therapy approach for breast cancer using a recombinant adenovirus expressing E coli cytosine deaminase. Cancer Gene Therapy, 4, 113–117.

    CAS  PubMed  Google Scholar 

  33. Wei, M. X., Tamiya, T., Rhee, R. J., et al. (1995). Diffusible cytotosxic metabolites contributes to the in vitro bystander effect associated with the cyclophosphamide / cytochrome P450 2B1 cancer gene therapy. Clinical Cancer Research, 1, 1171–1177.

    CAS  PubMed  Google Scholar 

  34. Marais, R., Spooner, R. A., Light, Y., et al. (1996). Gene-directed enzyme prodrug therapy with mustard prodrug/carboxypeptidase G2 combination. Cancer Research, 56, 4735–4742.

    CAS  PubMed  Google Scholar 

  35. Danks, M. K., Morton, C. I., Pawlik, C. A., & Potter, C. M. (1998). Overexpression of a rabbit liver carboxylesterase sensitizes human tumor cells to CPT-11. Cancer Research, 58, 20–22.

    CAS  PubMed  Google Scholar 

  36. Ostrand-Rosenberg, S., Gunther, V. S., Armstrong, T. A., et al. (1999). Immunologic targets for the gene therapy of cancer. In F. C. Lattime & S. L. Gerson (Eds.), Gene Therapy of Cancer (pp. 33–48). San Diego: Academic Press.

    Google Scholar 

  37. Barajas, M., Mazzolini, G., Gnove, G., et al. (2001). Gene therapy of orthotropic hepatocellular carcinoma in rats using adenovirus coding for IL-12. Hepatology, 33, 52–61.

    CAS  PubMed  Google Scholar 

  38. Shi, F., Rakhmilevich, A. L., Heise, C. P., et al. (2002). Intratumoral injection of IL-12 plasmid DNA, either naked or in complex with cationic lipid, results in similar tumor regression in a murine model. Molecular Cancer Therapeutics, 1, 949–957.

    CAS  PubMed  Google Scholar 

  39. Saudemont, A., Buffenoir, G., Denys, A., et al. (2002). Gene transfer of CD154 and IL-12 cDNA induces an anti-leukemic immunity in a murine model of acute leukemia. Leukemia, 16, 1637–1644.

    CAS  PubMed  Google Scholar 

  40. Vollmer, C. M., Eilber, F. C., Butterfield, L. H., et al. (1999). Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma. Cancer Research, 59, 3064–3067.

    CAS  PubMed  Google Scholar 

  41. Ribas, A., Butterfield, L. H., & Economou, J. S. (2000). Genetic immunotherapy for cancer. The Oncologist, 5, 87–98.

    CAS  PubMed  Google Scholar 

  42. Pardoll, D. M. (1998). Cancer vaccines. Natural Medicines, 4(suppl), 525–531.

    CAS  Google Scholar 

  43. Grimm, C. F., Ortmann, D., Mohr, L., et al. (2000). Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice. Gastroenteroly, 119, 1104–1112.

    CAS  Google Scholar 

  44. Hanke, P., Serwe, M., Dombrowski, F., et al. (2002). DNA vaccination with AFP-encoding tumors prevents growth of subcutaneous AFP-expressing tumors and does not interfere with liver regeneration in mice. Cancer Gene Therapy, 9, 346–355.

    CAS  PubMed  Google Scholar 

  45. Brustle, O., & McKay, R. G. (1996). Neuronal progenotors as tools for cell replacement in the nervous system. Current Opinion in Neurobiology, 6, 688–695.

    CAS  PubMed  Google Scholar 

  46. Flax, J. D., Aurora, S., Yang, C., et al. (1998). Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nature Biotechnology, 16, 1033–1039.

    CAS  PubMed  Google Scholar 

  47. Kim, S. U. (2004). Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology, 24, 159–171.

    PubMed  Google Scholar 

  48. Lindvall, O., Kokaia, Z., & Martinez-Serrano, A. (2004). Stem cell therapy for human neurodegenerative disorders-how to make it work. Nature Medicine, 10(suppl), S42–S50.

    PubMed  Google Scholar 

  49. Goldman, S. (2005). Stem and progenitor cell-based therapy of the human central nervous system. Nature Biotechnology, 7, 862–871.

    Google Scholar 

  50. Muller, F., Snyder, E. Y., & Loring, J. F. (2006). Gene therapy: can neural stem cells deliver? Nature Reviews Neuroscience, 7, 75–84.

    PubMed  Google Scholar 

  51. Lee, J. P., Jeyakumar, M., Gonzalez, R., et al. (2007). Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nature Medicine, 13, 439–447.

    CAS  PubMed  Google Scholar 

  52. Kim, S. U., & de Vellis, J. (2009). Stem cell-based cell therapy for neurological diseases. A review. Journal of Neuroscience Research, 87, 2183–2200.

    CAS  PubMed  Google Scholar 

  53. Aboody, K. S., Brown, A., Rainov, N. G., et al. (2000). Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proceedings of the National Academy of Sciences of the United States of America, 97, 12846–12851.

    CAS  PubMed  Google Scholar 

  54. Aboody, K. S., Najbauer, J., Schmidt, N. O., et al. (2006). Targeting of melanoma brain metastases using engineered neural stem/progenitor cells. Neuro-Oncology, 8, 119–126.

    CAS  PubMed  Google Scholar 

  55. Aboody, K. S., Bush, R. A., Garcia, E., et al. (2006). Development of a tumor-selective approach to treat metastatic cancer. PLoS ONE, 1, e123, 1–8.

    Google Scholar 

  56. Brown, A. B., Yang, W., Schmidt, N. O., et al. (2003). Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Human Gene Therapy, 14, 1777–1785.

    CAS  PubMed  Google Scholar 

  57. Najbauer, J., Danks, M. K., Schmidt, N. O., Kim, S. U., & Aboody, K. S. (2007). Neural stem cell-mediated therapy of primary and metastatic solid tumors. In: Bertolotti, R., & Ozawa, K. (Eds.). Progress in gene therapy, autologous and cancer stem cell gene therapy, vol 3, (pp 1–42), London, World Scientific.

  58. Lin, D., Najbauer, J., Salvaterra, P. M., et al. (2007). Novel method for visualizing and modeling the spatial distribution of neural stem cells within intracranial glioma. Neuroimage, 37(suppl 1), S18–S26.

    PubMed  Google Scholar 

  59. Danks, M. K., Yoon, K. J., Bush, R. A., et al. (2007). Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Research, 67, 22–25.

    CAS  PubMed  Google Scholar 

  60. Kim, S. K., Kim, S. U., Park, I. H., et al. (2006). Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clinical Cancer Research, 12, 5550–5556.

    CAS  PubMed  Google Scholar 

  61. Shimato, S., Natsume, A., Takeuchi, H., et al. (2007). Human neural stem cells target and deliver therapeutic gene to experimental leptomeningeal medulloblastoma. Gene Therapy, 14, 1132–1142.

    CAS  PubMed  Google Scholar 

  62. Kim, S. U., Park, I. H., Kim, T. H., et al. (2006). Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology, 26, 129–140.

    PubMed  Google Scholar 

  63. Yasuhara, T., Matsukawa, N., Yu, G., et al. (2006). Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. The Journal of Neuroscience, 26, 12497–12511.

    CAS  PubMed  Google Scholar 

  64. Ryu, J. K., Kim, J., Hong, S. H., et al. (2004). Proactive transplantation of human neural stem cells blocks neuronal cell death in rat model of Huntington disease. Neurobiology of Disease, 16, 68–77.

    CAS  PubMed  Google Scholar 

  65. Lee, S. T., Chu, K., Park, J. E., et al. (2005). Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neuroscience Research, 52, 243–249.

    CAS  PubMed  Google Scholar 

  66. Hwang, D. H., Lee, H. J., Seok, J. I., Kim, B. G., Joo, I. S., & Kim, S. U. (2009). Intrathecal transplantation of human neural stem cells over-expressing VEGF provides behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Therapy, 16, 1234–1244.

    CAS  PubMed  Google Scholar 

  67. Jeong, S. W., Chu, K., Jung, K. H., Kim, S. U., Kim, M., & Roh, J. K. (2003). Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke, 34, 2258–2263.

    PubMed  Google Scholar 

  68. Chu, K., Kim, M., Jeong, S. W., Kim, S. U., & Yoon, B. W. (2003). Human neural stem cells can migrate, differentiate and integrate after intravenous transplantation in adult rats with transient forbrain ischemia. Neuroscience Letters, 343, 637–643.

    Google Scholar 

  69. Chu, K., Park, K. I., Lee, S. T., et al. (2005). Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neuroscience Research, 53, 384–390.

    CAS  PubMed  Google Scholar 

  70. Lee, H. J., Kim, K. S., Kim, E. J., et al. (2007). Brain transplantation of human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells, 25, 211–224.

    Google Scholar 

  71. Lee, H. J., Kim, K. S., Kim, E. J., Park, I. H., & Kim, S. U. (2007). Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS ONE, 1, e156.

    Google Scholar 

  72. Lee, H. J., Park, I. H., Kim, H. J., & Kim, S. U. (2009). Human neural stem cells overexpressing glial cell line derived neurotrophic factor (GDNF) promote functional recovery and neuroprotection in experimental cerebral hemorrhage. Gene Therapy, 16, 1066–1076.

    CAS  PubMed  Google Scholar 

  73. Lee, S. T., Chu, K., Jung, K. H., et al. (2008). Anti-inflammatory mechanism of intravascular neural stem cell transplantation in hemorrhagic stroke. Brain, 131, 616–629.

    PubMed  Google Scholar 

  74. Meng, A., Ohashi, T., Kim, S. U., et al. (2003). Brain transplantation of genetically engineered human neural stem cells transduced with beta-glucuronidase globally corrects lysosomal storage and brain lesions in mucopolysaccharidosis VII mice. Journal of Neuroscience Research, 74, 266–277.

    CAS  PubMed  Google Scholar 

  75. Erlandsson, A., Larsson, J., & Forsberg-Nilsson, K. (2004). Stem cell factor is a chemoattractant and a survival factor for CNS stem cells. Experimental Cell Research, 301, 201–210.

    CAS  PubMed  Google Scholar 

  76. Sun, L., Lee, J., & Fine, H. A. (2004). Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. Journal of Clinical Investigation, 113, 1364–1374.

    CAS  PubMed  Google Scholar 

  77. Widera, D., Holtkamp, W., Entschladen, F., et al. (2004). MCP-1 induces migration of adult neural stem cells. European Journal of Cell Biology, 83, 381–387.

    CAS  PubMed  Google Scholar 

  78. Imitola, J., Raddassi, K., Park, K. I., et al. (2004). Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proceedings of the National Academy of Sciences of the United States of America, 101, 18117–18122.

    CAS  PubMed  Google Scholar 

  79. Takeuchi, H., Natsume, A., & Wakabayashi, T. (2007). Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neuroscience Letters, 426, 69–74.

    CAS  PubMed  Google Scholar 

  80. Schmidt, N. O., Przylecki, W., Yang, W., et al. (2005). Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia, 7, 623–629.

    CAS  PubMed  Google Scholar 

  81. Boockvar, J. A., Kapitonov, D., Kapoor, G., et al. (2003). Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Molecular and Cellular Neurosciences, 24, 1116–1130.

    CAS  PubMed  Google Scholar 

  82. Kendall, S. E., Najbauer, J., Johnston, H. F., et al. (2008). Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells, 26, 1575–1586.

    CAS  PubMed  Google Scholar 

  83. Gutova, M., Najbauer, J., Frank, R. T., et al. (2008). Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells, 26, 1406–1413.

    CAS  PubMed  Google Scholar 

  84. Zhao, D., Najbauer, J., Garcia, E., et al. (2008). Neural stem cell tropism to glioma: critical role of tumor hypoxia. Molecular Cancer Research, 6, 1819–1829.

    CAS  PubMed  Google Scholar 

  85. Forte, G., Minieri, M., Cossa, P., et al. (2006). Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells, 24, 23–33.

    CAS  PubMed  Google Scholar 

  86. Glaser, T., Brose, C., Franceschini, I., et al. (2007). Neural cell adhesion molecule polysialylation enhances the sensitivity of embryonic stem cell-derived neural precursors to migration guidance cues. Stem Cells, 25, 3016–3025.

    CAS  PubMed  Google Scholar 

  87. Zheng, H., Fu, G., Dai, T., & Huang, H. (2007). Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. Journal of Cardiovascular Pharmacology, 50, 274–280.

    CAS  PubMed  Google Scholar 

  88. Thu, M. S., Najbauer, J., Kendall, S. E., et al. (2009). Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS ONE, 4, e7218.

    PubMed  Google Scholar 

  89. Barresi, V., Belluardo, N., Sipione, S., et al. (2003). Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Therapy, 10, 396–402.

    CAS  PubMed  Google Scholar 

  90. Herrlinger, U., Woiciechowski, C., Sena-Esteves, M., et al. (2000). Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Molecular Therapy, 4, 347–357.

    Google Scholar 

  91. Li, S., Tokuyama, T., Yamamoto, J., et al. (2005). Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells. Cancer Gene Therapy, 12, 600–607.

    CAS  PubMed  Google Scholar 

  92. Brooks, P. C., Silletti, S., von Schalscha, T. L., Friedlander, M., & Cheresh, D. A. (1998). Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell, 92, 391–400.

    CAS  PubMed  Google Scholar 

  93. Bello, L., Lucini, V., Carrabba, G., et al. (2001). Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occurring fragment of human metaloproteinase-2. Cancer Research, 61, 8730–8736.

    CAS  PubMed  Google Scholar 

  94. Kim, S. K., Cargioli, T. G., Machluf, M., et al. (2005). PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clinical Cancer Research, 11, 5965–5970.

    CAS  PubMed  Google Scholar 

  95. Joo, K., Park, I. H., Shin, J. Y., et al. (2009). Human neural stem cells target and deliver therapeutic genes to breast cancer brain metastasis. Molecular Therapy, 17, 570–575.

    CAS  PubMed  Google Scholar 

  96. Gutova, M., Najbauer, J., Chen, M. Y., Kim, S. U., & Aboody, K. S. (2009). Therapeutic targeting of melanoma cells using neural stem cells expressing carboxylesterase, a CPT-11 activating enzyme. Current Stem Cell Research Therapy (in press).

  97. Weller, M., & Fontana, A. (1995). the failure of current immunotherapy for malignant glioma. Tumor-derived TGF-β, T-cell apoptosis, and the immune privilege of the brain. Brain Research Reviews, 21, 128–151.

    CAS  PubMed  Google Scholar 

  98. Hishii, M., Niita, T., Ishida, H., et al. (1995). Human glioma-derived interleukin-10 inhibits antiyumor immune responses in vitro. Neurosurgery, 37, 1160–1167.

    CAS  PubMed  Google Scholar 

  99. Saas, P., Walker, P. R., Hahne, M., et al. (1997). Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? Journal of Clinical Investigation, 99, 1173–1178.

    CAS  PubMed  Google Scholar 

  100. Benedetti, S., Bruzzone, M. G., Pollo, B., et al. (1999). Eradication of rat malignant glioma by retrovirus-mediated, in vitro delivery of the interleukin 4 gene. Cancer Research, 59, 645–652.

    CAS  PubMed  Google Scholar 

  101. Jean, W. C., Spelllman, S. R., Wallenfrieman, M., Hall, W., & Low, W. C. (1998). Interleukin-12-based immunotherapy against rat 9 L glioma. Neurosurgery, 42, 850–856.

    CAS  PubMed  Google Scholar 

  102. Liu, Y., Ehtersham, M., Samoto, K., et al. (2002). In situ adenoviral interleukin-12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Therapy, 9, 9–15.

    CAS  PubMed  Google Scholar 

  103. Puri, R. K., Leland, P., Kreitmen, R. J., & Pastan, I. (1994). Human neurological cancer cells express IL4 receptors which are target for the toxic effect of IL4-Pseudomonas exotoxin chimeric toxin. International Journal of Cancer, 58, 574–581.

    CAS  Google Scholar 

  104. Benedetti, S., Pirola, B., Pollo, B., et al. (2000). Gene therapy of experimental brain tumors using neural progenitor cells. Nature Medicine, 6, 447–450.

    CAS  PubMed  Google Scholar 

  105. Nastala, C. L., Edington, H. D., McKinnery, T. G., et al. (1994). Recombinant IL-12 administration induces tumor regression in association with Interferon-γ production. Journal of Immunology, 153, 1697–1706.

    CAS  Google Scholar 

  106. Ehtesham, M., Kabos, P., Kabosova, A., et al. (2002). The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Research, 62, 5657–5663.

    CAS  PubMed  Google Scholar 

  107. Rieger, J., Naumann, U., Ashkenazi, A., et al. (1998). APO2 ligand: anovel lethal weapon against malignant gliomas? FEBS Letters, 427, 124–128.

    CAS  PubMed  Google Scholar 

  108. Pollack, I. F., Erff, M., & Ashkenazi, A. (2001). Direct stimulation of apoptotic signaling by soluble Apo2/tumor necrosis-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clinical Cancer Research, 7, 1362–1369.

    CAS  PubMed  Google Scholar 

  109. Lee, J., Elkahlun, A. G., Messina, S. A., et al. (2002). Cellular and genetic characterization of human adult bone marrow-derived neural stem cells: a potential Cellular vector. Cancer Research, 63, 8877–8889.

    Google Scholar 

  110. Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407, 770–776.

    CAS  PubMed  Google Scholar 

  111. Corsten, M. F., & Shah, K. (2008). Therapeutic stem cells for cancer treatment: hopes and hurdles in tactical warfare. The Lancet Oncology, 9, 376–384.

    PubMed  Google Scholar 

  112. Ehtesham, M., Kabos, P., Gutierrez, M. A., et al. (2002). Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Research, 62, 7170–7174.

    CAS  PubMed  Google Scholar 

  113. Shah, K., Tung, C. H., Yang, K., et al. (2004). Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Research, 64, 3236–3242.

    CAS  PubMed  Google Scholar 

  114. Shah, K., Bureau, E., Kim, D. E., et al. (2005). Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Annals of Neurology, 57, 34–41.

    CAS  PubMed  Google Scholar 

  115. Tang, Y., Shah, K., Messelri, S. M., et al. (2003). In vivo tracking of neural progenitor cell migration to glioblastoma. Human Gene Therapy, 14, 1247–1254.

    CAS  PubMed  Google Scholar 

  116. Stark, G. R., Kerr, I. M., Williams, B. R., et al. (1998). How cells respond to interferons. Annual Reviews of Biochemistry, 67, 227–264.

    CAS  Google Scholar 

  117. Streck, C. J., Dickson, P. V., Ng, C. Y., et al. (2006). Antitumor efficacy of AAV-mediated delivery of Interferon-beta. Cancer Gene Therapy, 13, 99–106.

    CAS  PubMed  Google Scholar 

  118. Belardelli, F., Ferrantini, M., Proietti, E., et al. (2002). Interferon-alpha in tumor immunity and immunotherapy. Cytokine & Growth Factor Reviews, 13, 119–134.

    CAS  Google Scholar 

  119. Dvorak, H. F., & Gressor, I. (1989). microvascular injury in pathgenesis of interferon-induced necrosis of subcutaneous tumors in mice. Journal of the National Cancer Institute, 81, 497–502.

    CAS  PubMed  Google Scholar 

  120. Yoshida, J., Mizuno, M., & Wakabayashi, T. (2004). Interferon-β gene therapy for cancer: basic research to clinical application. Cancer Science, 95, 858–865.

    CAS  PubMed  Google Scholar 

  121. Dickson, P. V., Hamner, J. B., Berger, R. A., et al. (2007). Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of IFN-β and restricts tumor growth in a murine model of disseminated neuroblastoma. Journal of Pediatric Surgery, 42, 48–53.

    PubMed  Google Scholar 

  122. Ito, S., Natsume, A., Shimato, S., et al. (in press). Human neural stem cells transduced with IFN-β and cytosine deaminase genes intensify bystander effect in experimental glioma. Cancer Gene Therapy.

  123. Lee, D. H., Ahn, Y., Kim, S. U., et al. (2009). Targeting rat brainstem glioma using human neural stem cells and human mesenchymal stem cells. Clinical Cancer Research, 15, 4925–4934.

    CAS  PubMed  Google Scholar 

  124. Frank, R. T., Edmiston, M., Kendal, S. E. et al. Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies. PLoS One, 4, e8314.

  125. Stevanato, L., Corteling, R. L., Stroemer, P., et al. (2009). c-MycERTAM transgene silencing in a genetically modified human neural stem cell line implanted into MCAo rodent brain. BMC Neuroscience, 10, 86.

    PubMed  Google Scholar 

  126. King, G. D., Curtin, J. F., Candolfi, M., et al. (2005). Gene therapy and targeted toxins for glioma. Current Gene Therapy, 5, 535–557.

    CAS  PubMed  Google Scholar 

  127. Najbauer, J., Danks, M. K., Kim, S. U., et al. (2008). Neural stem cell mediated tumor-selective gene delivery: towards high grade glioma clinical trials. Molecular Therapy, 16(Suppl 1), S136.

    Google Scholar 

  128. Kim, S. U., Nagai, A., Nakagawa, E., et al. (2009). Production and characterization of immortal human neural stem cell line with multipotent differentiation property. Methods in Molecular Biology, 438, 103–121.

    Google Scholar 

Download references

Acknowledgements

The author thanks Drs. K. Aboody, M. Danks, S.K. Kim, D.H. Nam, A. Natsume and H.J. Lee for their contributions to the works cited in the article. This work was supported by grants from the Canadian Myelin Research Initiative and the National R&D Program for Cancer Control, Korean Ministry for Health, Welfare and Family affairs (20090403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung U. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.U. Neural Stem Cell-based Gene Therapy for Brain Tumors. Stem Cell Rev and Rep 7, 130–140 (2011). https://doi.org/10.1007/s12015-010-9154-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9154-1

Keywords

Navigation