Skip to main content
Log in

Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Thanks to their often very high population densities and their simple community structure, saltern crystallizer ponds form ideal sites to study the behavior of halophilic microorganisms in their natural environment at saturating salt concentrations. The microbial community is dominated by square red halophilic Archaea, recently isolated and described as Haloquadratum walsbyi, extremely halophilic red rod-shaped Bacteria of the genus Salinibacter, and the unicellular green alga Dunaliella as the primary producer. We review here, the information available on the microbial community structure of the saltern crystallizer brines and the interrelationships between the main components of their biota. As Dunaliella produces massive amounts of glycerol to provide osmotic stabilization, glycerol is often postulated to be the most important source of organic carbon for the heterotrophic prokaryotes in hypersaline ecosystems. We assess here, the current evidence for the possible importance of glycerol and other carbon sources in the nutrition of the Archaea and the Bacteria, the relative contribution of halophilic Bacteria and Archaea to the heterotrophic activity in the brines, and other factors that determine the nature of the microbial communities that thrive in the salt-saturated brines of saltern crystallizer ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FISH:

Fluorescent in situ hybridization

PHA:

Poly-β-hydroxyalkanoate

References

  • Al Harbi N, Gilmour DJ (2006) A comparion of glycerol production and leakage by three strains of the unicellular green alga Dunaliella (Volvocales, Chlorophyceae). Poster and Abstract, The 6th International Congress on Extremophiles, Brest

  • Antón J, Llobet Brossa E, Rodriguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523

    Article  PubMed  Google Scholar 

  • Antón J, Rosselló-Mora R, Rodriguez-Valera F, Amann R (2000) Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057

    Article  PubMed  Google Scholar 

  • Antón J, Oren A, Benlloch S, Rodriguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    PubMed  Google Scholar 

  • Benlloch S, Martínez-Murcia AJ, Rodriguez-Valera F (1995) Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574–581

    Google Scholar 

  • Benlloch S, Acinas SG, López-López A, Luz SP, Rodriguez-Valera F (2001) Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb Ecol 41:12–19

    PubMed  CAS  Google Scholar 

  • Bolhuis H (2005) Walsby’s square archaeon. It’s hip to be square, but even more hip to be culturable. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 185–199

    Chapter  Google Scholar 

  • Bolhuis H, te Poele EM, Rodriguez-Valera F (2004) Isolation and cultivation of Walsby’s square archaeon. Environ Microbiol 6:1287–1291

    Article  PubMed  Google Scholar 

  • Bolhuis H, Palm P, Wende A, Farb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon “Haloquadratum walsbyi”: life at the limits of water activity. BMC Genomics 7:169

    Article  PubMed  CAS  Google Scholar 

  • Borowitzka LJ (1981) The microflora. Adaptation to life in extremely saline lakes. Hydrobiologia 81:33–46

    Article  Google Scholar 

  • Brown AD, Lilley RM, Marengo T (1982a) Osmoregulation in Dunaliella. Intracellular distribution of enzymes of glycerol metabolism. Z Naturforsch 37:1115–1123

    Google Scholar 

  • Brown FF, Sussman I, Avron M, Degani H (1982b) NMR studies of glycerol permeability in lipid vesicles, erythrocytes, and the alga Dunaliella. Biochim Biophys Acta 690:165–173

    Article  CAS  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004a) Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol Lett 238:469–473

    CAS  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004b) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265

    Article  CAS  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodriguez-Valera FE, Bolhuis H, Dyall-Smith ML (2006) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol (in press)

  • Burton RM (1957) The determination of glycerol and dihydroxyacetone. Meth Enzymol 3:246–249

    Google Scholar 

  • Cho BC (2005) Heterotrophic flagellates in hypersaline waters. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 543–549

    Google Scholar 

  • Corcelli A, Lattanzio VMT, Mascolo G, Babudri F, Oren A, Kates M (2004) Novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl Environ Microbiol 70:6678–6685

    Article  PubMed  CAS  Google Scholar 

  • Elevi Bardavid R, Ionescu D, Oren A, Rainey FA, Hollen BJ, Bagaley DR, Small AM, McKay CM (2006) Selective enrichment, isolation and molecular detection of Salinibacter and related extremely halophilic Bacteria from hypersaline environments. Hydrobiologia (in press)

  • Fernandez-Castillo R, Rodriguez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F (1986) Accumulation of poly-β-hydroxybutyrate) by halobacteria. Appl Environ Microbiol 51:214–216

    PubMed  CAS  Google Scholar 

  • Fujii S, Hellebust JA (1992) Release of intracellular glycerol and pore formation in Dunaliella tertiolecta exposed to hypertonic stress. Can J Bot 70:1313–1318

    CAS  Google Scholar 

  • Gimmler H, Lotter G (1982) The intracellular distribution of enzymes of the glycerol cycle in the unicellular alga Dunaliella parva. Z Naturforsch 37:1107–1114

    Google Scholar 

  • Gimmler H, Hartung W (1988) Low permeability of the plasma membrane of Dunaliella for solutes. J Plant Physiol 133:165–172

    Google Scholar 

  • Guixa-Boixareu N, Caldéron-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11:213–227

    Article  Google Scholar 

  • Guven K, Mutlu MB, Martinez-Garcia M, Santos F, Antón J (2006) Microbial populations of Camalti saltern in Turkey. Poster and Abstract, 11th International Symposium on Microbial Ecology, Vienna

  • Hart BC, Gilmour DJ (1991) A mutant of Dunaliella parva CCAP 19/9 leaking large amounts of glycerol into the medium. J Appl Phycol 3:367–372

    Google Scholar 

  • Javor B (1989) Hypersaline environments. Microbiology and biogeochemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kessel M, Cohen Y (1982) Ultrastructure of square bacteria from a brine pool in southern Sinai. J Bacteriol 150:851–860

    PubMed  CAS  Google Scholar 

  • Kis-Papo T, Oren A (2000) Halocins: are they important in the competition between different types of halobacteria in saltern ponds? Extremophiles 4:35–41

    PubMed  CAS  Google Scholar 

  • Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodriguez-Valera F, Papke RT (2006) Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genomics 7:171

    Article  PubMed  CAS  Google Scholar 

  • Lillo JAG, Rodriguez-Valera F (1990) Effects of culture conditions on poly-β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56:2517–2521

    PubMed  Google Scholar 

  • Lutnæs BF, Oren A, Liaaen-Jensen S (2002) New C40-carotenoid acyl glycoside as principal carotenoid of Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:1340–1343

    Article  PubMed  CAS  Google Scholar 

  • Mongodin EF, Nelson KE, Daugherty S, DeBoy RT, Wister J, Khouri H, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbø CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodriguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152

    Article  PubMed  CAS  Google Scholar 

  • O’Connor EM, Shand RF (2002) Halocins and sulfolobicins: the emerging stody of archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 28:23–31

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1983) Halobacterium sodomense sp. nov., a Dead Sea halobacterium with extremely high magnesium requirement and tolerance. Int J Syst Bacteriol 33:381–386

    Google Scholar 

  • Oren A (1990a) Estimation of the contribution of halobacteria to the bacterial biomass and activity in a solar saltern by the use of bile salts. FEMS Microbiol Ecol 73:41–48

    Article  CAS  Google Scholar 

  • Oren A (1990b) The use of protein synthesis inhibitors in the estimation of the contribution of halophilic archaebacteria to bacterial activity in hypersaline environments. FEMS Microbiol Ecol 73:187–192

    Article  CAS  Google Scholar 

  • Oren A (1990c) Thymidine incorporation in saltern ponds of different salinities: estimation of in situ growth rates of halophilic archaeobacteria and eubacteria. Microb Ecol 19:43–51

    Article  Google Scholar 

  • Oren A (1991) Estimation of the contribution of archaebacteria and eubacteria to the bacterial biomass and activity in hypersaline ecosystems: novel approaches. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic bacteria. Plenum Publishing Company, New York, pp 25–31

    Google Scholar 

  • Oren A (1993) Availability, uptake and turnover of glycerol in hypersaline environments. FEMS Microbiol Ecol 12:15–23

    Article  CAS  Google Scholar 

  • Oren A (1994) Characterization of the halophilic archaeal community in saltern crystallizer ponds by means of polar lipid analysis. Int J Salt Lake Res 3:15–29

    Article  Google Scholar 

  • Oren A (1995a) The role of glycerol in the nutrition of halophilic archaeal communities: a study of respiratory electron transport. FEMS Microbiol Ecol 16:281–290

    Article  CAS  Google Scholar 

  • Oren A (1995b) Uptake and turnover of acetate in hypersaline environments. FEMS Microbiol Ecol 18:75–84

    Article  CAS  Google Scholar 

  • Oren A (1999) The enigma of square and triangular halophilic Archaea. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer, Dordrecht, pp 337–355

    Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer, Dordrecht

    Google Scholar 

  • Oren A, Dubinsky Z (1994) On the red coloration of saltern crystallizer ponds. II. Additional evidence for the contribution of halobacterial pigments. Int J Salt Lake Res 3:9–13

    Article  Google Scholar 

  • Oren A, Gurevich P (1994) Production of d-lactate, acetate, and pyruvate from glycerol in communities of halophilic archaea in the Dead Sea and in saltern crystallizer ponds. FEMS Microbiol Ecol 14:147–156

    CAS  Google Scholar 

  • Oren A, Litchfield CD (1999) A procedure for the enrichment and isolation of Halobacterium species. FEMS Microbiol Lett 173:353–358

    Article  CAS  Google Scholar 

  • Oren A, Mana L (2002) Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic Bacterium. Extremophiles 6:217–223

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Rodriguez-Valera F (2001) The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130

    PubMed  CAS  Google Scholar 

  • Oren A, Stambler N, Dubinsky Z (1992) On the red coloration of saltern crystallizer ponds. Int J Salt Lake Res 1:77–89

    Article  Google Scholar 

  • Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754

    PubMed  CAS  Google Scholar 

  • Oren A, Duker S, Ritter S (1996) The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 138:135–140

    Article  CAS  Google Scholar 

  • Oren A, Priel N, Shapira O, Siboni N (2005) Gas vesicles in Walsby’s square archaeon—do they provide flotation in saltern crystallizer ponds? Saline Syst 2:4

    Article  Google Scholar 

  • Øvreås L, Daae FL, Torsvik V, Rodriguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction length polymorphism (T-RFLP). Microb Ecol 46:291–301

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Kim HJ, Choi DH, Cho BC (2003) Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat Microb Ecol 33:173–179

    Article  Google Scholar 

  • Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marasse C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155

    PubMed  Google Scholar 

  • Rodriguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb Ecol 11:107–115

    Article  CAS  Google Scholar 

  • Rodriguez-Valera F, Lillo JAG (1992) Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiol Rev 103:181–186

    Article  CAS  Google Scholar 

  • Rodriguez-Valera F, Acinas SG, Antón J (1999) Contribution of molecular techniques to the study of microbial diversity in hypersaline environments. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton, pp 27–38

    Google Scholar 

  • Rosselló-Mora R, Lee N, Antón J, Wagner M (2003) Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles 7:409–413

    Article  PubMed  CAS  Google Scholar 

  • Sher J, Elevi R, Mana L, Oren A (2004) Glycerol metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiol Lett 232:211–215

    Article  PubMed  CAS  Google Scholar 

  • Stoeckenius W (1981) Walsby’s square bacterium: fine structure of an orthogonal prokaryote. J Bacteriol 148:352–360

    PubMed  CAS  Google Scholar 

  • Tomlinson GA, Hochstein LI (1972) Studies on acid production during carbohydrate metabolism by extremely halophilic bacteria. Can J Microbiol 18:1973–1976

    Article  PubMed  CAS  Google Scholar 

  • Walsby AE (1980) A square bacterium. Nature 283:69–71

    Article  Google Scholar 

  • Walsby AE (2005) Archaea with square cells. Trends Microbiol 13:193–195

    Article  PubMed  CAS  Google Scholar 

  • Wegmann K, Ben-Amotz A, Avron M (1980) Effect of temperature on glycerol retention in the halotolerant algae Dunaliella and Asteromonas. Plant Physiol 66:1196–1197

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our work on the salterns in Eilat has been supported by the Israel Science Foundation (grant no. 504/03). We thank the Israel Salt Company in Eilat, Israel, for allowing access to the salterns, and the staff of the Interuniversity Institute for Marine Sciences of Eilat, for logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren.

Additional information

Communicated by D. A. Cowan.

Three-letter abbreviations for names of genera of Halobacteriaceae conform the recommendations of the ICSP Subcommittee on the Taxonomy of Halobacteriaceae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elevi Bardavid, R., Khristo, P. & Oren, A. Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 12, 5–14 (2008). https://doi.org/10.1007/s00792-006-0053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0053-y

Keywords

Navigation