Skip to main content
Log in

Characterization of Microbial Diversity in Hypersaline Environments by Melting Profiles and Reassociation Kinetics in Combination with Terminal Restriction Fragment Length Polymorphism (T-RFLP)

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The diversity of prokaryotes inhabiting solar saltern ponds was determined by thermal melting and reassociation of community DNA. These measurements were compared with fingerprinting techniques such as terminal restriction fragment length polymorphisms (T-RFLP) analysis, denaturant gradient gel electrophoresis (DGGE), and cloning and sequencing approaches. Three ponds with salinities of 22, 32, and 37% (NaCl saturation) were studied. The combination of independent molecular techniques to estimate the total genetic diversity provided a realistic assessment to reveal the microbial diversity in these environments. The changes in the prokaryotic communities at different salinity (22, 32, and 37% salt) were significant and revealed that the total genetic diversity increased from 22% to 32% salinity. At 37% salinity the diversity was reduced again to nearly half that at 22% salinity. Our results revealed that the community “genome” had a DNA complexity that was 7 (in 22% salinity pond), 13 (in 32% salinity pond), and 4 (in 37% salinity pond) times the complexity of an Escherichia coli genome. The base composition profiles showed two abundant populations, which changed in relative amount between the three ponds. They indicated an uneven taxon distribution at 22% and 37% salinity and a more even distribution at 32% salinity. The results indicated a large predominating population at 37% salinity, which might correspond to the abundance of square archaea (SPhT) observed by transmission electron microscopy (TEM) and also indicated by the same T-RFLP fragment as the SPhT. The SPhT phylotype has also been reported to be the most frequently retrieved phylotype from this environment by culture independent techniques. In addition, two different operational taxonomic units (OTU) were detected at 37% salinity based on PCR with bacterial specific primers and T-RFLP. One of these predominant phylotypes is the extreme halophilic bacterium belonging to the bacteroidetes group, Salinibacter ruber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. RI Amann W Ludwig KH Schleifer (1995) ArticleTitlePhylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59 143–169 Occurrence Handle1:CAS:528:DyaK2MXkvVGmurk%3D Occurrence Handle7535888

    CAS  PubMed  Google Scholar 

  2. J Antón E Llobet-Brossa F Rodríguez-Valera RI Amann (1999) ArticleTitleFluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1 517–525 Occurrence Handle11207773

    PubMed  Google Scholar 

  3. J Antón R Rosselló-Mora F Rodríguez-Valera RI Amann (2000) ArticleTitleExtremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66 3052–3057 Occurrence Handle10877805

    PubMed  Google Scholar 

  4. J Antón A Oren S Benlloch F Rodríguez-Valera R Amann R Roselló-Mora (2001) ArticleTitle Salinibacter ruber gen. nov., sp. nov., a new species of extremely halophilic Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52 485–491

    Google Scholar 

  5. S Benlloch AJ Martínez-Murcia F Rodríguez-Valera (1995) ArticleTitleSequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18 574–581

    Google Scholar 

  6. S Benlloch A López-López E Casamayor L Øvreås V Goddard FL Daae G Smerdon R Massana I Joint TF Thingstad C Pedrós-Alió F Rodríguez-Valera (2002) ArticleTitleProkaryotic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4 349–360 Occurrence Handle10.1046/j.1462-2920.2002.00306.x Occurrence Handle12071980

    Article  PubMed  Google Scholar 

  7. G Bratbak M Heldal (1993) Total counts of viruses in aquatic environments. PF Kemp BF Sherr EB Sherr JJ Cole (Eds) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers Boca Raton, FL 135–138

    Google Scholar 

  8. EO Casamayor H Schäfer L Bañeras C Pedrós-Alió G Muyzer (2000) ArticleTitleIdentification and spatiotemporal differences between microbial assemblages from two neighboring sulforous lakes: comparison by microscopy and denaturant gradient gel electrophoresis. Appl Environ Microbiol 66 499–508 Occurrence Handle1:CAS:528:DC%2BD3cXhtFerur0%3D Occurrence Handle10653710

    CAS  PubMed  Google Scholar 

  9. EO Casamayor JI Calderón-Paz C Pedrós-Alió (2000) ArticleTitle5S rRNA fingerprints of marine bacteria, halophilic archaea and natural procaryotic assemblages along a salinity gradient. FEMS Microbiol Ecol 34 113–119

    Google Scholar 

  10. EO Casamayor R Massana S Benlloch L Øvreås B Díez VJ Goddard JM Gasol I Joint F Rodríguez-Valera C Pedrós-Alió (2002) ArticleTitleChanges in archaeal, bacterial and eucaryal assemblages along a salinity gradient by comparison of genetic fingerprint methods in a multipond solar saltern. Environ Microbiol 4 338–348 Occurrence Handle10.1046/j.1462-2920.2002.00297.x Occurrence Handle12071979

    Article  PubMed  Google Scholar 

  11. EF DeLong (1992) ArticleTitle Archaea in coastal marine environments. Proc Nat–Acad Sci USA 89 5685–5689 Occurrence Handle1:CAS:528:DyaK38Xks1Kntrs%3D

    CAS  Google Scholar 

  12. RT Espejo CJ Feijoo J Romero M Vásquez (1998) ArticleTitlePAGE separation of the heteroduplex formed between PCR amplified 16S ribosomal RNA genes allows estimation of phylogenetic relatedness between isolates and assessment of bacterial diversity. Microbiology 144 1611–1617 Occurrence Handle1:CAS:528:DyaK1cXktVSntrk%3D Occurrence Handle9639932

    CAS  PubMed  Google Scholar 

  13. A Felske ADL Akkermans WM Devos (1998) ArticleTitleQuantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription PCR in temperature gradient gel electrophoresis fingerprints. Appl Environ Microbiol 64 4581–4587 Occurrence Handle1:CAS:528:DyaK1cXnt1Wqtro%3D Occurrence Handle9797325

    CAS  PubMed  Google Scholar 

  14. N Guixa-Boixareu JI Calderón-Paz M Heldal G Bratbak C Pedrós-Alió (1996) ArticleTitleViral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11 215–227

    Google Scholar 

  15. JL Harper DL Hawksworth (1994) ArticleTitleBiodiversity: Measurements and estimation. Preface. Phil Trans R Soc Lond B 345 5–12 Occurrence Handle1:STN:280:ByqD283lslQ%3D

    CAS  Google Scholar 

  16. W-T Liu TL Marsh H Cheng L Forney (1997) ArticleTitleCharacterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63 4516–4522 Occurrence Handle1:CAS:528:DyaK2sXnt12ntbs%3D Occurrence Handle9361437

    CAS  PubMed  Google Scholar 

  17. M Mandel L Igambi J Bergendahl ML Dodson E Scheltgen (1970) ArticleTitleCorrelation of melting temperature and cesium chloride boyant density of bacterial deoxyribonucleic acid. J Bacteriol 101 333–338 Occurrence Handle1:CAS:528:DyaE3cXmt1OhsA%3D%3D Occurrence Handle5413818

    CAS  PubMed  Google Scholar 

  18. G Muyzer T Brinkhoff U Nübel C Santegoeds H Schäfer C Wawer (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. ADL Akkermans JD van Elsas FJ de Bruijn (Eds) Molecular Microbial Ecology Manual. Kluwer Academic Publishers Dordrecht 1–27

    Google Scholar 

  19. WV Ng SP Kennedy GG Mahairas B Bergquist M Pan HD Shukla SR Lasky NS Baliga V Thorsson J Sbrogna S Swartzell D Weir J Hall TA Dahl R Welti YA Goo B Leithauser K Keller R Cruz MJ Danson DW Hough DG Maddocks PE Jablonski MP Krebs CM Angevine H Dale TA Isenbarger RF Peck M Pohlschroder JL Spudich KW Jung M Alam T Freitas S Hou CJ Daniels PP Dennis AD Omer H Ebhardt TM Lowe P Liang M Riley L Hood S DasSarma (2000) ArticleTitleGenome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 12176–12181 Occurrence Handle1:CAS:528:DC%2BD3cXnvVSgtbk%3D Occurrence Handle11016950

    CAS  PubMed  Google Scholar 

  20. A Oren (1994) ArticleTitleThe ecology of the extremely halophilic archaea. FEMS Microbiol Rev 13 415–430 Occurrence Handle1:CAS:528:DyaK2cXivFelsL8%3D

    CAS  Google Scholar 

  21. C Pedrós-Alió JI Calderón-Paz MH MacLean G Medina C Marassé JM Gasol N Guixa-Boixereu (2000) ArticleTitleThe microbial foodweb along salinity gradients. FEMS Microbiol Ecol 32 143–155

    Google Scholar 

  22. NT Perna G Plunkett 3rd V Burland B Mau JD Glasner DJ Rose GF Mayhew PS Evans J Gregor HA Kirkpatrick G Posfai J Hackett S Klink A Boutin Y Shao L Miller EJ Grotbeck NW Davis A Lim ET Dimalanta KD Potamousis J Apodaca TS Anantharaman J Lin G Yen DC Schwartz RA Welch FR Blattner (2001) ArticleTitleGenome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 463 465–466

    Google Scholar 

  23. L Riemann GF Steward LB Fandino L Campbell MR Landry F Azam (1999) ArticleTitleBacterial community composition during two consecutive NE Monsoon periods in the Arabian sea studied by denaturing gradient gel electrophoresis (DGGE) of rRNA genes. Deep Sea Res II 46 1791–1811 Occurrence Handle10.1016/S0967-0645(99)00044-2

    Article  Google Scholar 

  24. K Ritz BS Griffiths VL Torsvik NB Hendriksen (1997) ArticleTitleAnalysis of soil and bacterioplanktoncommunity DNA by melting profiles and reassociation kinetics. FEMS Microbiol Lett 149 151–156 Occurrence Handle10.1016/S0378-1097(97)00056-6 Occurrence Handle1:CAS:528:DyaK2sXisVemuro%3D

    Article  CAS  Google Scholar 

  25. F Rodríguez-Valera A Ventosa G Juez JF Imhoff (1985) ArticleTitleVariation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb Ecol 11 107–115

    Google Scholar 

  26. F Rodríguez-Valera SG Acinas J Antón (1999) Contribution of molecular techniques to the study of microbial diversity in hypersaline environments. A Oren (Eds) Microbiology and Biogeochemistry of Hypersaline Environments. CRC Press Boca Raton, FL 27–38

    Google Scholar 

  27. KO Stetter (1998) Hyperthermophiles: Isolation, classification and properties. K Horikoshi WD Grant (Eds) Extremophiles—Microbial Life in Extreme Environments. Wiley New York 1–24

    Google Scholar 

  28. V Torsvik J Goksøyr FL Daae (1990) ArticleTitleHigh diversity in DNA of soil bacteria. Appl Environ Microbiol 56 782–787 Occurrence Handle1:CAS:528:DyaK3cXhsFCqt74%3D Occurrence Handle2317046

    CAS  PubMed  Google Scholar 

  29. V Torsvik R Sørheim J Goksøyr (1996) ArticleTitleTotal bacterial diversity in soil and sediment communities—a review. J Indust Microbiol 17 170–178 Occurrence Handle1:CAS:528:DyaK2sXltFOksQ%3D%3D

    CAS  Google Scholar 

  30. V Torsvik L Øvreås TF Thingstad (2002) ArticleTitleProcaryotic diversity—magnitude, dynamics, and controlling factors. Science 296 1064–1066 Occurrence Handle10.1126/science.1071698 Occurrence Handle1:CAS:528:DC%2BD38Xjslantrc%3D Occurrence Handle12004116

    Article  CAS  PubMed  Google Scholar 

  31. der van MJEC Maarel RRE Artz R Haanstra LJ Forney (1998) ArticleTitleAssociation of marine Archaea with the digestive tracts of two marine fish species. Appl Environ Microbiol 64 2894–2898

    Google Scholar 

  32. AE Walsby (1980) ArticleTitleA square bacterium. Nature 283 69–71

    Google Scholar 

  33. DM Ward MJ Ferris SC Nold MM Bateson ED Kopczynski AL Ruff-Roberts (1994) Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches—relationship between biodiversity and community structure. LJ Stahl P Caumette (Eds) Microbial Mats: Structure, Development and Environmental Significance. Springer Verlag Heidelberg 33–44

    Google Scholar 

  34. LG Wayne DJ Brenner RR Colwell PAD Grimont O Kandler MI Krichevsky LH Moore WEC Moore RGE Murray E Stackebrandt MP Starr HG Truper (1987) ArticleTitleReport of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463–464

    Google Scholar 

  35. L Øvreås (2000) ArticleTitlepopulation and community level approaches for analysing microbial diversity in natural environments. Ecol Lett 3 236–251

    Google Scholar 

Download references

Acknowledgements

The electron microscopy work was done at the Laboratory for Electron Microscopy, University of Bergen. We thank Mikal Heldal for contributing the electron microscopy work. The T-RFLP analyses were performed at the laboratory for Oral Microbiology, University of Bergen. We thank Professor Vidar Bakken for using the ABI DNA sequencer and Kristi Øvreås for technical assistance on the T-RFLP analysis. This work has been financed by the European Union through contract MAS3-CT97-0154 “MIDAS” and the Norwegian Research Council (NFR). Finally, we thank Miguel Cuervo-Arango, owner of the Bras-del-Port salterns, for his kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Øvreås.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Øvreås, L., Daae, F., Torsvik, V. et al. Characterization of Microbial Diversity in Hypersaline Environments by Melting Profiles and Reassociation Kinetics in Combination with Terminal Restriction Fragment Length Polymorphism (T-RFLP) . Microb Ecol 46, 291–301 (2003). https://doi.org/10.1007/s00248-003-3006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-003-3006-3

Keywords

Navigation