Skip to main content
Log in

Characterization of the halophilic archaeal community in saltern crystallizer ponds by means of polar lipid analysis

  • Published:
International Journal of Salt Lake Research

Abstract

Saltern crystallizer ponds are coloured red due to the presence of dense communities of red halophilic archaea (family Halobacteriaceae). Little quantitative information exists on the species distribution within the archaeal community in such ponds. As the different genera of the Halobacteriaceae differ in polar lipid content, and especially in the types of glycolipids, lipid analysis can be used to obtain information on the nature of the organisms present. Analysis of the polar lipids extracted from the biomass collected from the saltern crystallizer ponds in Eilat, Israel, showed one major glycolipid to be present, co-chromatographing with the sulfated diglycosyl diether lipid characteristic of the genusHaloferax. No indications were found for the presence of significant amounts of those glycolipids that would indicate the presence of large numbers of other archaea such asHalobacterium species (H. cutirubrum andH. salinarium, characterized by sulfated triglycosyl and tetraglycosyl diethers), orHaloarcula species (possessing a triglycosyl diether). Phosphatidyl glycerosulfate, a polar lipid absent inHaloferax species, was present in the lipid extract from the crystallizer ponds, suggesting that the dominant microorganism present may be related to strains which are presently classified in the genusHalobacterium but are awaiting a taxonomic reappraisal (H. sodomense, H. saccharovorum, andH. trapanicum). Organisms of the latter group are characterized by sulfated diglycosyl diethers, and the presence of phosphatidyl glycerosulfate. Attempts to isolate the dominant type of bacterium on agar plates yielded relatively low counts (1–2 orders of magnitude lower than the numbers observed microscopically) of bacteria, and most of the isolates had a polar lipid composition characteristic of theH. salinarium group or theH. sodomense-H. saccharovorum-H. trapanicum group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Evans, R.W., Kushwaha, S.C. and Kates, M. 1980. The lipids ofHalobacterium marismortui, an extremely halophilic bacterium in the Dead Sea. Biochimica et Biophysica Acta 619:533–544.

    Google Scholar 

  • Fredrickson, H.L., Rijpstra, W.I.C., Tas, A.C., van der Greef, J., LaVos, G.F. and de Leeuw, J.W. 1989. Chemical characterizations of benthic microbial assemblages. In: Y. Cohen and E. Rosenberg (Eds) Microbial Mats. Physiological Ecology of Benthic Microbial Communities, pp. 455–468. American Society for Microbiology, Washington.

    Google Scholar 

  • Hunter, M.I.S., Olawoye, T.L. and Saynor, D.A. 1981. The effect of temperature on the growth and lipid composition of the extremely halophilic coccus,Sarcina marina. Antonie van Leeuwenhoek 47:25–40.

    Google Scholar 

  • Javor, B.J. 1984. Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Applied and Environmental Microbiology 48:352–360.

    Google Scholar 

  • Kamekura, M. 1992. Lipids of extreme halophiles. In: R.H. Vreeland and L.I. Hochstein (Eds) The Biology of Halophilic Bacteria, pp. 135–161. CRC Press, Boca Raton.

    Google Scholar 

  • Kales, M. 1972. Techniques of Lipidology. Elsevier/North Holland, New York.

    Google Scholar 

  • Kates, M., Moldoveanu, N. and Stewart, L.C. 1993. On the revised structure of the major phospholipid ofHalobacterium salinarium. Biochimica et Biophysica Acta 1169:46–53.

    Google Scholar 

  • Kushwaha, S.C., Juez-Perez, G., Rodriguez-Valera, F., Kates, M. and Kushner, D.J. 1982a. Survey of lipids of a new group of extremely halophilic bacteria from salt ponds in Spain. Canadian Journal of Microbiology 28:1365–1372.

    Google Scholar 

  • Kushwaha, S.C., Kates, M., Juez, G., Rodriguez-Valera, F. and Kushner, D.J. 1982b. Polar lipids of an extremely halophilic bacterial strain (R-4) isolated from salt ponds in Spain. Biochimica et Biophysica Acta 711:19–25.

    Google Scholar 

  • Lanzotti, V., Nicolaus, B., Trincone, A. and Grant, W.D. 1988. The glycolipid ofHalobacterium saccharovorum. FEMS Microbiology Letters 55:223–228.

    Google Scholar 

  • Lazar, B. and Erez, J. 1992. Carbon geochemistry of marine-derived brines: I.13C depletions due to intense photosynthesis. Geochimica et Cosmochimica Acta 56: 335–345.

    Google Scholar 

  • Moldoveanu, N., Kates, M., Montero, C.G. and Ventosa, A. 1990. Polar lipids of nonalkaliphilicHalococci. Biochimica et Biophysica Acta 1046:127–135.

    Google Scholar 

  • Norton, C.F., McGenity, T.J. and Grant, W.D. 1993. Archaeal halophiles (halobacteria) from two British salt mines. Journal of General Microbiology 139:1077–1081.

    Google Scholar 

  • Oren, A. 1990. Estimation of the contribution of halobacteria to the bacterial biomass and activity in a solar saltern by the use of bile salts. FEMS Microbiology Ecology 73:41–48.

    Google Scholar 

  • Oren, A. 1991. Estimation of the contribution of archaebacteria and eubacteria to the bacterial biomass and activity in hypersaline ecosystems: novel approaches. In: F. Rodriguez-Valera (Ed.) General and Applied Aspects of Halophilic Bacteria, pp. 25–31. Plenum, New York.

    Google Scholar 

  • Oren, A. 1992. Ecology of extremely halophilic microorganisms. In: R.H. Vreeland and L.I. Hochstein (Eds) The Biology of Halophilic Bacteria, pp. 25–53. CRC Press, Boca Raton.

    Google Scholar 

  • Oren, A. and Dubinsky, Z. 1994. On the red coloration of saltern crystallizer ponds. II. Additional evidence for the contribution of halobacterial pigments. International Journal of Salt Lake Research 3:9–13 (this issue).

    Google Scholar 

  • Oren, A. and Gurevich, P. 1993. Characterization of the dominant halophilic archaea in a bacterial bloom in the Dead Sea. FEMS Microbiology Ecology 12:249–256.

    Google Scholar 

  • Oren, A., Stambler, N. and Dubinsky, Z. 1992. On the red coloration of saltern crystallizer ponds. International Journal of Salt Lake Research 1:77–89.

    Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F. and Ramos-Cormenzana, A. 1980. Isolation of extremely halophilic bacteria able to grow in defined organic media with single carbon sources. Journal of General Microbiology 119:535–538.

    Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F. and Ramos-Cormenzana, A. 1981. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microbial Ecology 7:235–243.

    Google Scholar 

  • Rodriguez-Valera, F., Ventosa, A., Juez, G. and Imhoff, J.F. 1985. Variations of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microbial Ecology 11:107–115.

    Google Scholar 

  • Takashina, T., Hamamoto, T., Otozai, K., Grant, W.D. and Horikoshi, K. 1990.Haloarcula japonica sp. nov., a new triangular halophilic archaebacterium. Systematic and Applied Microbiology 13:177–181.

    Google Scholar 

  • Tindall, B.J. 1990a. A comparative study of the lipid composition ofHalobacterium saccharovorum from various sources. Systematic and Applied Microbiology 13:128–130.

    Google Scholar 

  • Tindall, B.J. 1990b. Lipid composition ofHalobacterium lacusprofundi. FEMS Microbiology Letters 66:199–202.

    Google Scholar 

  • Tindall, B.J. 1991. The family Halobacteriaceae. In: A. Balows, H.G. Trüper, M. Dworkin, W. Harder and K.-H. Schleifer (Eds) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., pp. 768–808. Springer, New York.

    Google Scholar 

  • Torreblanca, M., Rodriguez-Valera, F., Juez, G., Ventosa, A., Kamekura, M. and Kates, M. 1986. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description ofHaloarcula gen. nov. andHaloferax gen. nov. Systematic and Applied Microbiology 8:89–99.

    Google Scholar 

  • Torrella, F. 1986. Isolation and adaptive strategies of haloarculae to extreme hypersaline habitats. In: Abstracts of the Fourth International Symposium on Microbiol Ecology, Ljubljana, Abstract C19-3, p. 59.

  • Trevelyan, W.E. and Harrison, J.S. 1952. Studies on yeast metabolism. 1. Fractionation and microdetermination of cell carbohydrates. Biochemical Journal 50:298–303.

    Google Scholar 

  • Trincone, A., Nicolaus, B., Lama, L., De Rosa, M., Gambacorta, A. and Grant, W.D. 1990. The glycolipid ofHalobacterium sodomense. Journal of General Microbiology 136:2327–2331.

    Google Scholar 

  • Trincone, A., Trivellone, E., Nicolaus, B., Lama, L., Pagnotta, E., Grant, W.D. and Gambacorta, A. 1993. The glycolipid ofHalobacterium trapanicum. Biochimica et Biophysica Acta 1210:35–40.

    Google Scholar 

  • Wais, A.C. 1988. Recovery of halophilic archaebacteria from natural environments. FEMS Microbiology Ecology 53:211–216.

    Google Scholar 

  • Walsby, A.E. 1980. A square bacterium. Nature 283:69–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oren, A. Characterization of the halophilic archaeal community in saltern crystallizer ponds by means of polar lipid analysis. International Journal of Salt Lake Research 3, 15–29 (1994). https://doi.org/10.1007/BF01990639

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01990639

key words

Navigation