Skip to main content
Log in

Effects of the lung surfactant protein B construct Mini-B on lipid bilayer order and topography

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The hydrophobic lung surfactant protein, SP-B, is essential for survival. Cycling of lung volume during respiration requires a surface-active lipid–protein layer at the alveolar air–water interface. SP-B may contribute to surfactant layer maintenance and renewal by facilitating contact and transfer between the surface layer and bilayer reservoirs of surfactant material. However, only small effects of SP-B on phospholipid orientational order in model systems have been reported. In this study, N-terminal (SP-B8–25) and C-terminal (SP-B63–78) helices of SP-B, either linked as Mini-B or unlinked but present in equal amounts, were incorporated into either model phospholipid mixtures or into bovine lipid extract surfactant in the form of vesicle dispersions or mechanically oriented bilayer samples. Deuterium and phosphorus nuclear magnetic resonance (NMR) were used to characterize effects of these peptides on phospholipid chain orientational order, headgroup orientation, and the response of lipid–peptide mixtures to mechanical orientation by mica plates. Only small effects on chain orientational order or headgroup orientation, in either vesicle or mechanically oriented samples, were seen. In mechanically constrained samples, however, Mini-B and its component helices did have specific effects on the propensity of lipid–peptide mixtures to form unoriented bilayer populations which do not exchange with the oriented fraction on the timescale of the NMR experiment. Modification of local bilayer orientation, even in the presence of mechanical constraint, may be relevant to the transfer of material from bilayer reservoirs to a flat surface-active layer, a process that likely requires contact facilitated by the formation of highly curved protrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida PF, Vaz WL, Thompson TE (2005) Lipid diffusion, free area, and molecular dynamics simulations. Biophys J 88:4434–4438

    Article  PubMed  CAS  Google Scholar 

  • Antharam VC, Farver RS, Kuznetsova A, Sippel KH, Mills FD, Elliott DW, Sternin E, Long JR (2008) Interactions of the C-terminus of lung surfactant protein B with lipid bilayers are modulated by acyl chain saturation. Biochim Biophys Acta 1778:2544–2554

    Article  PubMed  CAS  Google Scholar 

  • Baatz JE, Sarin V, Absolom DR, Baxter C, Whitsett JA (1991) Effects of surfactant-associated protein SP-B synthetic analogs on the structure and surface activity of model membrane bilayers. Chem Phys Lipids 60:163–178

    Article  PubMed  CAS  Google Scholar 

  • Bertani P, Vidovic V, Yang TC, Rendell J, Gordon LM, Waring AJ, Bechinger B, Booth V (2012) Orientation and depth of surfactant protein B C-terminal helix in lung surfactant bilayers. Biochim Biophys Acta 1818:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Booth VK, Waring AJ, Walther FJ, Keough KM (2004) NMR structures of the C-terminal segment of surfactant protein B in detergent micelles and hexafluoro-2-propanol. Biochemistry 43:15187–15194

    Article  PubMed  CAS  Google Scholar 

  • Clark JC, Wert SE, Bachurski CJ, Stahlman MT, Stripp BR, Weaver TE, Whitsett JA (1995) Targeted disruption of the surfactant protein B gene disrupts surfactant homeostasis, causing respiratory failure in newborn mice. Proc Natl Acad Sci USA 92:7794–7798

    Article  PubMed  CAS  Google Scholar 

  • Crouch EC (1998) Structure, biologic properties, and expression of surfactant protein D (SP-D). Biochim Biophys Acta 1408:278–289

    Article  PubMed  CAS  Google Scholar 

  • Davis JH (1983) The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta 737:117–171

    Article  PubMed  CAS  Google Scholar 

  • Davis JH, Jeffrey KR, Bloom M, Valic M, Higgs TP (1976) Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem Phys Lett 42:390–394

    Article  CAS  Google Scholar 

  • Dico AS, Hancock J, Morrow MR, Stewart J, Harris S, Keough KM (1997) Pulmonary surfactant protein SP-B interacts similarly with dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylcholine in phosphatidylcholine/phosphatidylglycerol mixtures. Biochemistry 36:4172–4177

    Article  PubMed  CAS  Google Scholar 

  • Eaton JW (2002) Gnu Octave manual. Network Theory Limited, Bristol

  • Farver RS, Mills FD, Antharam VC, Chebukati JN, Fanucci GE, Long JR (2010) Lipid polymorphism induced by surfactant peptide SP-B1–25. Biophys J 99:1773–1782

    Article  PubMed  CAS  Google Scholar 

  • Filippov A, Oradd G, Lindblom G (2003) The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. Biophys J 84:3079–3086

    Article  PubMed  CAS  Google Scholar 

  • Frey SL, Pocivavsek L, Waring AJ, Walther FJ, Hernandez-Juviel JM, Ruchala P, Lee KYC (2010) Functional importance of the NH2-terminal insertion sequence of lung surfactant protein B. Am J Physiol Lung Cell Mol Physiol 298:L335–L347

    Article  PubMed  CAS  Google Scholar 

  • Goerke J (1998) Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta 1408:79–89

    Article  PubMed  CAS  Google Scholar 

  • Hawgood S, Derrick M, Poulain F (1998) Structure and properties of surfactant protein B. Biochim Biophys Acta 1408:150–160

    Article  PubMed  CAS  Google Scholar 

  • Hildebran JN, Goerke J, Clements J (1979) Pulmonary surface film stability and composition. J Appl Physiol 47:604–611

    PubMed  CAS  Google Scholar 

  • Kang JH, Lee MK, Kim KL, Hahm KS (1996) The relationships between biophysical activity and the secondary structure of synthetic peptides from the pulmonary surfactant protein SP-B. Biochem Mol Biol Int 40:617–627

    PubMed  CAS  Google Scholar 

  • Kurutz JW, Lee KY (2002) NMR structure of lung surfactant peptide SP-B(11–25). Biochemistry 41:9627–9636

    Article  PubMed  CAS  Google Scholar 

  • Lafleur M, Fine B, Sternin E, Cullis PR, Bloom M (1989) Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance. Biophys J 56:1037–1041

    Article  PubMed  CAS  Google Scholar 

  • Lang CJ, Postle AD, Orgeig S, Possmayer F, Bernhard W, Panda AK, Jurgens KD, Milson WK, Nag K, Daniels CB (2005) Dipalmitoylphosphatidylcholine is not the major surfactant phospholipid species in all mammals. Am J Physiol Regul Integr Comp Physiol 289:R1426–R1439

    Article  PubMed  CAS  Google Scholar 

  • Lindhout DA, Thiessen A, Schieve D, Sykes BD (2003) High-yield expression of isotopically labeled peptides for use in NMR studies. Protein Sci 12:1786–1791

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zhao L, Manzanares D, Doherty-Kirby A, Zhang CJ, Possmayer F, Lajoie GA (2008) Characterization of bovine surfactant proteins B and C by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 22:197–203

    Article  PubMed  CAS  Google Scholar 

  • McCormack FX (1998) Structure, processing and properties of surfactant protein A. Biochim Biophys Acta 1408:109–131

    Article  PubMed  CAS  Google Scholar 

  • Morrow MR, Stewart J, Taneva S, Dico A, Keough KMW (2004) Perturbation of DPPC bilayers by high concentrations of pulmonary surfactant SP-B. Eur Biophys J 33:285–290

    Article  PubMed  CAS  Google Scholar 

  • Morrow MR, Temple S, Stewart J, Keough KM (2007) Comparison of DPPC and DPPG environments in pulmonary surfactant models. Biophys J 93:164–175

    Article  PubMed  CAS  Google Scholar 

  • Nag K, Keough KMW, Morrow MR (2006) Probing perturbation of bovine lung surfactant extracts by albumin using DSC and 2H-NMR. Biophys J 90:3632–3642

    Article  PubMed  CAS  Google Scholar 

  • Nogee LM, Garnier G, Dietz HC, Singer L, Murphy AM, deMello DE, Colten HR (1994) A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest 93:1860–1863

    Article  PubMed  CAS  Google Scholar 

  • Panda AK, Nag K, Harbottle RR, Possmayer F, Petersen NO (2007) Thermodynamic studies of bovine lung surfactant extract mixing with cholesterol and its palmitate derivative. J Colloid Interface Sci 311:551–555

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Gil J (2002) Molecular interactions in pulmonary surfactant films. Biol Neonate 81(suppl 1):6–15

    PubMed  Google Scholar 

  • Perez-Gil J, Weaver TE (2010) Pulmonary surfactant pathophysiology: current models and open questions. Physiology (Bethesda) 25:132–141

    Article  CAS  Google Scholar 

  • Possmayer F, Hall SB, Haller T, Petersen NO, Zuo YY, de la Serna JB, Postle AD, Veldhuizen RAW, Orgeig S (2010) Recent advances in alveolar biology: some new looks at the alveolar interface. Respir Physiol Neurobiol 173(Suppl):S55–S64

    Article  PubMed  CAS  Google Scholar 

  • Postle AD, Heeley EL, Wilton DC (2001) A comparison of the molecular species compositions of mammalian lung surfactant phospholipids. Comp Biochem Physiol Part A Mol Integr Physiol 129:65–73

    Article  CAS  Google Scholar 

  • Prosser RS, Davis JH, Dahlquist FW, Lindorfer MA (1991) 2H nuclear magnetic resonance of the gramicidin A backbone in a phospholipid bilayer. Biochemistry 30:4687–4696

    Article  PubMed  CAS  Google Scholar 

  • Revak SD, Merritt TA, Hallman M, Heldt G, La Polla RJ, Hoey K, Houghten RA, Cochrane CG (1991) The use of synthetic peptides in the formation of biophysically and biologically active pulmonary surfactants. Pediatr Res 29:460–465

    Article  PubMed  CAS  Google Scholar 

  • Rugonyi S, Biswas SC, Hall SB (2008) The biophysical function of pulmonary surfactant. Respir Physiol Neurobiol 163:244–255

    Article  PubMed  CAS  Google Scholar 

  • Russell-Schulz B, Booth V, Morrow MR (2009) Perturbation of DPPC/POPG bilayers by the N-terminal helix of lung surfactant protein SP-B: a (2)H NMR study. Eur Biophys J 38:613–624

    Article  PubMed  CAS  Google Scholar 

  • Ryan MA, Qi XY, Serrano AG, Ikegami M, Pérez-Gil J, Johansson J, Weaver TE (2005) Mapping and analysis of the lytic and fusogenic domains of surfactant protein B. Biochemistry 44:861–872

    Article  PubMed  CAS  Google Scholar 

  • Sarker M, Waring AJ, Walther FJ, Keough KM, Booth V (2007) Structure of Mini-B, a functional fragment of surfactant protein B, in detergent micelles. Biochemistry 46:11047–11056

    Article  PubMed  CAS  Google Scholar 

  • Schürch D, Ospina OL, Cruz A, Pérez-Gil J (2010) Combined and independent action of proteins SP-B and SP-C in the surface behavior and mechanical stability of pulmonary surfactant films. Biophys J 99:3290–3299

    Article  PubMed  Google Scholar 

  • Seelig A, Seelig J (1977) Effect of a single cis double bond on the structures of a phospholipid bilayer. Biochemistry 16:45–50

    Article  PubMed  CAS  Google Scholar 

  • Seelig J, Seelig A (1980) Lipid conformation in model membranes and biological membranes. Q Rev Biophys 13:19–61

    Article  PubMed  CAS  Google Scholar 

  • Serrano AG, Ryan M, Weaver TE, Pérez-Gil J (2006) Critical structure-function determinants within the N-terminal region of pulmonary surfactant protein SP-B. Biophys J 90:238–249

    Article  PubMed  CAS  Google Scholar 

  • Walther FJ, Hernandez-Juviel JM, Gordon LM, Sherman MA, Waring AJ (2002) Dimeric surfactant protein B peptide sp-b(1–25) in neonatal and acute respiratory distress syndrome. Exp Lung Res 28:623–640

    Article  PubMed  CAS  Google Scholar 

  • Walther FJ, Waring AJ, Hernandez-Juviel JM, Gordon LM, Schwan AL, Jung CL, Chang YS, Wang ZD, Notter RH (2007) Dynamic surface activity of a fully synthetic phospholipase-resistant lipid/peptide lung surfactant. PLoS ONE 2:e1039

    Article  PubMed  Google Scholar 

  • Walther FJ, Waring AJ, Hernandez-Juviel JM, Gordon LM, Wang ZD, Jung CL, Ruchala P, Clark AP, Smith WM, Sharma S, Notter RH (2010) Critical structural and functional roles for the N-terminal insertion sequence in surfactant protein B analogs. PLoS ONE 5:e8672

    Article  PubMed  Google Scholar 

  • Waring AJ, Walther FJ, Gordon LM, Hernandez-Juviel JM, Hong T, Sherman MA, Alonso C, Alig T, Braun A, Bacon D, Zasadzinski JA (2005) The role of charged amphipathic helices in the structure and function of surfactant protein B. J Pept Res 66:364–374

    Article  PubMed  CAS  Google Scholar 

  • Whitsett JA, Nogee LM, Weaver TE, Horowitz AD (1995) Human surfactant protein B: structure, function, regulation, and genetic disease. Physiol Rev 75:749–757

    PubMed  CAS  Google Scholar 

  • Yang TC, McDonald M, Morrow MR, Booth V (2009) The effect of a C-terminal peptide of surfactant protein B (SP-B) on oriented lipid bilayers, characterized by solid-state 2H- and 31P-NMR. Biophys J 96:3762–3771

    Article  PubMed  CAS  Google Scholar 

  • Yu SH, Possmayer F (1996) Effect of pulmonary surfactant protein A and neutral lipid on accretion and organization of dipalmitoylphosphatidylcholine in surface films. J Lipid Res 37:1278–1288

    PubMed  CAS  Google Scholar 

  • Yu S, Harding PG, Smith N, Possmayer F (1983) Bovine pulmonary surfactant: chemical composition and physical properties. Lipids 18:522–529

    Article  PubMed  CAS  Google Scholar 

  • Zuo YY, Veldhuizen RA, Neumann AW, Petersen NO, Possmayer F (2008) Current perspectives in pulmonary surfactant–inhibition, enhancement and evaluation. Biochim Biophys Acta 1778:1947–1977

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research and by the Natural Sciences and Engineering Research Council of Canada, and by the National Institutes of Health (HL-094641). We acknowledge the CREAIT network at Memorial for assisting with NMR facility maintenance and training, and in particular Dr. Celine Schneider. We would like to thank Lauren MacEachern for her help with the simulations, Donna Jackman for her help with sample preparation, as well as Frans Walther for the assistance he provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Morrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palleboina, D., Waring, A.J., Notter, R.H. et al. Effects of the lung surfactant protein B construct Mini-B on lipid bilayer order and topography. Eur Biophys J 41, 755–767 (2012). https://doi.org/10.1007/s00249-012-0850-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0850-4

Keywords

Navigation