Skip to main content
Log in

Perturbation of DPPC/POPG bilayers by the N-terminal helix of lung surfactant protein SP-B: a 2H NMR study

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

SP-B8–25 is a synthetic peptide comprising the N-terminal helix of the essential lung surfactant protein SP-B. Rat lung oxygenation studies have shown that SP-B8–25 retains some of the function of full-length SP-B. We have used deuterium nuclear magnetic resonance (2H-NMR) to examine the influence of SP-B8–25 on the mixing properties of saturated PC and unsaturated PG lipids in model mixed lipid bilayers containing dipalmitoylphosphatidylcholine (DPPC) and palmitoyl-oleoyl-phosphatidylglycerol (POPG), in a molar ratio of 7:3. In the absence of the peptide, 2H-NMR spectra of DPPC/POPG mixtures, with one or the other lipid component deuterated, indicate coexistence of large liquid crystal and gel domains over a range of about 10°C through the liquid crystal to gel transition of the bilayer. Addition of SP-B8–25 has little effect on the width of the transition but the spectra through the transition range cannot be resolved into distinct liquid crystal and gel spectral components suggesting that the peptide interferes with the tendency of the DPPC and POPG lipid components in this mixture to phase separate near the bilayer transition temperature. Quadrupole echo decay observations suggest that the peptide may also reduce differences in the correlation times for local reorientation of the two lipids. These observations suggest that SP-B8–25 promotes a more thorough mixing of saturated PC and unsaturated PG components and may be relevant to understanding the behaviour of lung surfactant material under conditions of lateral compression which might be expected to enhance the propensity for saturated and unsaturated surfactant lipid components to segregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson M, Curstedt T, Jornvall H, Johansson J (1995) An amphipathic helical motif common to tumourolytic polypeptide NK-lysin and pulmonary surfactant polypeptide SP-B. FEBS Lett 362:328–332. doi:10.1016/0014-5793(95)00268-E

    Article  PubMed  CAS  Google Scholar 

  • Antharam VC, Farver RS, Kuznetsova A, Sippel KH, Mills FD, Elliott DW, Sternin E, Long JR (2008) Interactions of the C-terminus of lung surfactant protein B with lipid bilayers are modulated by acyl chain saturation. Biochim Biophys Acta 1778:2544–2554. doi:10.1016/j.bbamem.2008.07.013

    Article  PubMed  CAS  Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    PubMed  CAS  Google Scholar 

  • Beck DC, Ikegami M, Na CL, Zaltash S, Johansson J, Whitsett JA, Weaver TE (2000) The role of homodimers in surfactant protein B function in vivo. J Biol Chem 275:3365–3370. doi:10.1074/jbc.275.5.3365

    Article  PubMed  CAS  Google Scholar 

  • Bloom M, Sternin E (1987) Transverse nuclear spin relaxation in phospholipids bilayer membranes. Biochemistry 26:2101–2105. doi:10.1021/bi00382a007

    Article  CAS  Google Scholar 

  • Booth V, Waring AJ, Walther FJ, Keough KMW (2004) NMR structures of the C-terminal segment of surfactant protein B I detergent micelles and hexafluoro-2-propanaol. Biochemistry 43:15187–15194. doi:10.1021/bi0481895

    Article  PubMed  CAS  Google Scholar 

  • Clark JC, Wert SE, Bachurski CJ, Stahlman MT, Stripp BR, Weaver TE, Whitsett JA (1995) Targetted disruption of the surfactant protein B gene disrupts surfactant homeostasis, causing respiratory failure in newborn mice. Proc Natl Acad Sci USA 92:7794–7798. doi:10.1073/pnas.92.17.7794

    Article  PubMed  CAS  Google Scholar 

  • Clements JA (1957) Surface tension of lung extracts. Proc Soc Exp Biol Med 95:170–172

    PubMed  CAS  Google Scholar 

  • Cruz A, Vázquez L, Vélez M, Pérez-Gil J (2004) Effect of pulmonary surfactant protein SP-B on the micro- and nanostructure of phospholipids films. Biophys J 86:308–320. doi:10.1016/S0006-3495(04)74106-5

    Article  PubMed  CAS  Google Scholar 

  • Davis JH (1979) Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoyl phosphatidylcholine. Biophys J 27:339–358. doi:10.1016/S0006-3495(79)85222-4

    Article  PubMed  CAS  Google Scholar 

  • Davis JH, Jeffrey KR, Bloom M, Valic MI, Higgs TP (1976) Quadrupole echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem Phys Lett 42:390–394. doi:10.1016/0009-2614(76)80392-2

    Article  CAS  Google Scholar 

  • Dico AS, Hancock J, Morrow MR, Stewart J, Harris S, Keough KMW (1997) Pulmonary surfactant protein SP-B interacts similarly with dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylcholine in phosphatidylcholine/phosphatidylglycerol mixtures. Biochemistry 36:4172–4177. doi:10.1021/bi962693v

    Article  PubMed  CAS  Google Scholar 

  • Fleming BD, Keough KMW (1983) Thermotropic mesomorphism in aqueous dispersions of 1-palmitoyl-2-oleoyl- and 1, 2-dilauroyl-phosphatidylglycerols in the presence of excess Na+ or Ca2+. Can J Biochem Cell Biol 61:882–891

    Article  PubMed  CAS  Google Scholar 

  • Goerke J (1998) Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta 1408:79–89

    PubMed  CAS  Google Scholar 

  • Hawgood S, Derrick M, Poulain F (1998) Structure and properties of surfactant protein B. Biochim Biophys Acta 1408:150–160

    PubMed  CAS  Google Scholar 

  • Johansson J, Curstedt T, Jornvall H (1991) Surfactant protein B: disulfide bridges, structural properties, and kringle similarities. Biochemistry 30:6917–6921. doi:10.1021/bi00242a015

    Article  PubMed  CAS  Google Scholar 

  • Karakatsanis P, Bayerl TM (1996) Diffusion measurements in oriented phospholipids bilayers by 1H-NMR in a static fringe field gradient. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 54:1785–1790. doi:10.1103/PhysRevE.54.1785

    PubMed  CAS  Google Scholar 

  • Keough KMW (1998) Lung surfactant: cellular and molecular processing. In: Rooney SA (ed) Surfactant composition and extracellular transformations. R. G. Landes, Georgetown, pp 1–27

    Google Scholar 

  • Keough KMW, Kariel N (1987) Differential scanning calorimetric studies of aqueous dispersions of phosphatidylcholines containing two polyenoic chains. Biochim Biophys Acta 902:11–18. doi:10.1016/0005-2736(87)90130-1

    Article  PubMed  CAS  Google Scholar 

  • Kurutz JW, Lee KY (2002) NMR structure of lung surfactant peptide SP-B(11–25). Biochemistry 41:9627–9636. doi:10.1021/bi016077x

    Article  PubMed  CAS  Google Scholar 

  • Mabrey S, Sturtevant JM (1976) Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry. Proc Natl Acad Sci USA 73:3862–3866. doi:10.1073/pnas.73.11.3862

    Article  PubMed  CAS  Google Scholar 

  • Manzanares D, Rodriguez-Capote K, Liu S, Haines T, Ramos Y, Zhao L, Doherty-Kirby A, Lajoie G, Possmayer F (2007) Modification of tryptophan and methionine residues is implicated in the oxidative inactivation of surfactant protein B. Biochemistry 46:5604–5615. doi:10.1021/bi062304p

    Article  PubMed  CAS  Google Scholar 

  • McCabe MA, Wassall SR (1995) Fast-Fourier transform dePaking. J Magn Reson Ser B 106:80–82. doi:10.1006/jmrb.1995.1013

    Article  CAS  Google Scholar 

  • Morrow MR, Pèrez-Gil J, Simatos G, Boland C, Stewart J, Absolom D, Sarin V, Keough KMW (1993) Pulmonary surfactant-associated protein SP-B has little effect on acyl chains in dipalmitoylphosphatidylcholine dispersions. Biochemistry 32:4397–4402. doi:10.1021/bi00067a032

    Article  PubMed  CAS  Google Scholar 

  • Morrow MR, Stewart J, Taneva S, Dico A, Keough KMW (2004) Perturbation of DPPC bilayers by high concentrations of pulmonary surfactant protein SP-B. Eur Biophys J 33:285–290. doi:10.1007/s00249-003-0357-0

    Article  PubMed  CAS  Google Scholar 

  • Morrow MR, Temple S, Stewart J, Keough KMW (2007) Comparison of DPPC and DPPG environments in pulmonary surfactant models. Biophys J 93:164–175. doi:10.1529/biophysj.106.102681

    Article  PubMed  CAS  Google Scholar 

  • Nogee LM, Garnier G, Dietz HC, Singer L, Murphy AM, deMello DE, Colten HR (1994) A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest 93:1860–1863. doi:10.1172/JCI117173

    Article  PubMed  CAS  Google Scholar 

  • Pastrana-Rios B, Flach CR, Brauner JW, Mautone AJ, Mendelsohn R (1994) A direct test of the “squeeze-out” hypothesis of lung surfactant function. External reflection FT-IR at the air/water interface. Biochemistry 33:5121–5127. doi:10.1021/bi00183a016

    Article  PubMed  CAS  Google Scholar 

  • Pattle RE (1955) Properties, function and origin of the alveolar lining layer. Nature 175:1125–1126. doi:10.1038/1751125b0

    Article  PubMed  CAS  Google Scholar 

  • Pauls KP, MacKay AL, Söderman O, Bloom M, Tangea AK, Hodges RS (1985) Dynamic properties of the backbone of an integral membrane peptide measured by 2H-NMR. Eur Biophys J 12:1–11. doi:10.1007/BF00254089

    Article  PubMed  CAS  Google Scholar 

  • Perez-Gil J, Keough KMW (1998) Interfacial properties of surfactant proteins. Biochim Biophys Acta 1408:203–217

    PubMed  CAS  Google Scholar 

  • Postle AD, Heeley EL, Wilton DC (2001) A comparison of the molecular species compositions of mammalian lung surfactant phospholipids. Comp Biochem Physiol A Mol Integr Physiol 129:65–73. doi:10.1016/S1095-6433(01)00306-3

    Article  PubMed  CAS  Google Scholar 

  • Prosser RS, Davis JH, Dahlquist FW, Lindorfer MA (1991) 2H nuclear magnetic resonance of the gramicidin A backbone in a phospholipid bilayer. Biochemistry 30:4687–4696. doi:10.1021/bi00233a008

    Article  PubMed  CAS  Google Scholar 

  • Revak SD, Merritt TA, Degryse E, Stefani L, Courtney M, Hallman M, Cochrane CG (1988) Use of human surfactant low molecular weight apoproteins in the reconstitution of surfactant biologic activity. J Clin Invest 81:826–833. doi:10.1172/JCI113391

    Article  PubMed  CAS  Google Scholar 

  • Revak SD, Merritt TA, Hallman M, Heldt G, Polla RJL, Hoey K, Houghten RA, Cochrane CG (1991) The use of synthetic peptides in the formation of biophysically and biologically active pulmonary surfactants. Pediatr Res 29:460–465. doi:10.1203/00006450-199105010-00010

    Article  PubMed  CAS  Google Scholar 

  • Ryan MA, Qi X, Serrano AG, Ikegami M, Pérez-Gil J, Johansson J, Weaver TE (2005) Mapping and analysis of the lytic and fusogenic domains of surfactant protein B. Biochemistry 44:861–872. doi:10.1021/bi0485575

    Article  PubMed  CAS  Google Scholar 

  • Sarker M, Waring AJ, Walther FJ, Keough KMW, Booth V (2007) Structure of mini-B, a functional fragment of surfactant protein B, in detergent micelles. Biochemistry 46:11047–11056. doi:10.1021/bi7011756

    Article  PubMed  CAS  Google Scholar 

  • Serrano AG, Ryan M, Weaver TE, Pérez-Gil J (2006) Critical structure-function determinants within the N-terminal region of pulmonary surfactant protein SP-B. Biophys J 90:238–249. doi:10.1529/biophysj.105.073403

    Article  PubMed  CAS  Google Scholar 

  • Stohrer J, Gröbner G, Reimer D, Weisz K, Mayer C, Kothe G (1991) Collective lipid motions in bilayer membranes studied by transverse deuteron spin relaxation. J Chem Phys 95:672–678

    Article  CAS  Google Scholar 

  • Vandenbussche G, Clercx A, Clercx M, Curstedt T, Johansson J, Jornvall H, Ruysschaert JM (1992) Secondary structure and orientation of the surfactant protein SP-B in a lipid environment. A Fourier transform infrared spectroscopy study. Biochemistry 31:9169–9176. doi:10.1021/bi00153a008

    Article  PubMed  CAS  Google Scholar 

  • Veldhuizen R, Nag K, Orgeig S, Possmayer F (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta 1408:90–108

    PubMed  CAS  Google Scholar 

  • Veldhuizen EJ, Waring AJ, Walther FJ, Batenburg JJ, van Golde LM, Haagsman HP (2000) Dimeric N-terminal segment of human surfactant protein B (dSP-B(1–25)) has enhanced surface properties compared to monomeric SP-B(1–25). Biophys J 79:377–384. doi:10.1016/S0006-3495(00)76299-0

    Article  PubMed  CAS  Google Scholar 

  • Walther FJ, Hernandez-Juviel JM, Gordon LM, Sherman MA, Waring AJ (2002) Dimeric surfactant protein B peptide SP-B(1–25) in neonatal and acute respiratory distress syndrome. Exp Lung Res 28:623–640. doi:10.1080/01902140260426733

    Article  PubMed  CAS  Google Scholar 

  • Weisz K, Gröbner G, Mayer C, Stohrer J, Kothe G (1992) Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipids/cholesterol bilayer membranes: molecular properties and viscoelastic behaviour. Biochemistry 31:1100–1112. doi:10.1021/bi00119a019

    Article  PubMed  CAS  Google Scholar 

  • Wiedmann T, Salmon A, Wong V (1993) Phase behaviour of mixtures of DPPC and POPG. Biochim Biophys Acta 1167:114–120

    PubMed  CAS  Google Scholar 

  • Yu SH, Smith N, Harding PGR, Possmayer F (1983) Bovine pulmonary surfactant: chemical composition and physical properties. Lipids 18:522–529. doi:10.1007/BF02535391

    Article  PubMed  CAS  Google Scholar 

  • Zasadzinski JA, Ding J, Warriner HE, Bringezu F, Waring AJ (2001) The physics and physiology of lung surfactants. Curr Opin Colloid Interface Sci 6:506–511. doi:10.1016/S1359-0294(01)00124-8

    Article  CAS  Google Scholar 

  • Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F (2008a) Current perspectives in pulmonary surfactant—inhibition, enhancement, and evaluation. Biochim Biophys Acta 1778:1947–1977. doi:10.1016/j.bbamem.2008.03.021

    Article  PubMed  CAS  Google Scholar 

  • Zuo YY, Keating E, Zhao L, Tadayyon SM, Veldhuizen RAW, Petersen NO, Possmayer F (2008b) Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films. I. Micro- and nanostructures of functional pulmonary surfactant films and the effect of SP-A. Biophys J 94:3549–3564. doi:10.1529/biophysj.107.122648

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Natural Sciences and Engineering Research Council Undergraduate Student Research Award to B. R.-S. and by grants from the Natural Science and Engineering Research Council of Canada to M. R. M. and from the Canadian Institutes of Health Research to V. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Morrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell-Schulz, B., Booth, V. & Morrow, M.R. Perturbation of DPPC/POPG bilayers by the N-terminal helix of lung surfactant protein SP-B: a 2H NMR study. Eur Biophys J 38, 613–624 (2009). https://doi.org/10.1007/s00249-009-0415-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0415-3

Keywords

Navigation