Skip to main content

Drug Meets Monolayer: Understanding the Interactions of Sterol Drugs with Models of the Lung Surfactant Monolayer Using Molecular Dynamics Simulations

  • Protocol
  • First Online:
Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2402))

Abstract

The lung surfactant monolayer (LSM) is a thin layer of lipids and proteins that forms the air/water interface of the alveoli. The primary function of the LSM is to reduce the surface tension at the air/water interface during breathing. The LSM also forms the main biological barrier for any inhaled particles, including drugs, to treat lung diseases. Elucidating the mechanism by which these drugs bind to and absorb into the LSM requires a molecular-level understanding of any drug-induced changes to the morphology, structure, and phase changes of the LSM.

Molecular dynamics simulations have been used extensively to study the structure and dynamics of the LSM. The monolayer is usually simulated in at least two states: the compressed state, mimicking exhalation, and the expanded state, mimicking inhalation. In this chapter, we provide detailed instructions on how to set up, run, and analyze coarse-grained MD simulations to study the concentration-dependent effect of a sterol drug on the LSM, both in the expanded and compressed state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zasadzinski JA, Ding J, Warriner HE, Bringezu F, Waring AJ (2001) The physics and physiology of lung surfactants. Curr Opin Colloid Interface Sci 6(5–6):506–513

    Article  CAS  Google Scholar 

  2. Alonso C, Alig T, Yoon J, Bringezu F, Warriner H, Zasadzinski JAJBJ (2004) More than a monolayer: relating lung surfactant structure and mechanics to composition. Biophys J 87(6):4188–4202

    Article  CAS  Google Scholar 

  3. Han S, Mallampalli RK (2015) The role of surfactant in lung disease and host defense against pulmonary infections. Ann Am Thorac Soc 12(5):765–774

    Article  Google Scholar 

  4. Hidalgo A, Cruz A, Perez-Gil J (2015) Barrier or carrier? Pulmonary surfactant and drug delivery. Eur J Pharm Biopharm 95(Pt a):117–127. https://doi.org/10.1016/j.ejpb.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  5. Ruge CA, Kirch J, Lehr C-M (2013) Pulmonary drug delivery: from generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges. Lancet Respir Med 1(5):402–413. https://doi.org/10.1016/S2213-2600(13)70072-9

    Article  CAS  PubMed  Google Scholar 

  6. Wang F, Liu J, Zeng HJ (2020) Interactions of particulate matter and pulmonary surfactant: implications for human health. Adv Colloid Interface Sci 284:102244

    Article  CAS  Google Scholar 

  7. Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6(1):67–74. https://doi.org/10.1038/nrd2153

    Article  CAS  PubMed  Google Scholar 

  8. Parra E, Pérez-Gil J (2015) Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 185:153–175. https://doi.org/10.1016/j.chemphyslip.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  9. Goerke J (1998) Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta (BBA) Mol Basis Dis 1408(2–3):79–89. https://doi.org/10.1016/S0925-4439(98)00060-X

    Article  CAS  Google Scholar 

  10. Sethi G, Singhal KK (2008) Pulmonary diseases and corticosteroids. Indian J Pediatrics 75(10):1045–1056

    Article  CAS  Google Scholar 

  11. Polin RA, Carlo WAJP (2014) Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics 133(1):156–163

    Article  Google Scholar 

  12. Baoukina S, Tieleman DP (2016) Computer simulations of lung surfactant. Biochim Biophys Acta Biomembr 1858(10):2431–2440. https://doi.org/10.1016/j.bbamem.2016.02.030

    Article  CAS  Google Scholar 

  13. Baoukina S, Tieleman DP (2013) Simulations of lipid monolayers. In: Biomolecular simulations, vol 924, pp 431–444. https://doi.org/10.1007/978-1-62703-017-5_16

    Chapter  Google Scholar 

  14. Rose D, Rendell J, Lee D, Nag K, Booth V (2008) Molecular dynamics simulations of lung surfactant lipid monolayers. Biophys Chem 138(3):67–77. https://doi.org/10.1016/j.bpc.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  15. Rekvig L, Hafskjold B, Smit BJ (2004) Chain length dependencies of the bending modulus of surfactant monolayers. Phys Rev Lett 92(11):116101

    Article  Google Scholar 

  16. Baoukina S, Tieleman DP (2011) Lung surfactant protein SP-B promotes formation of bilayer reservoirs from monolayer and lipid transfer between the interface and subphase. Biophys J 100(7):1678–1687. https://doi.org/10.1016/j.bpj.2011.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laing C, Baoukina S, Peter Tieleman D (2009) Molecular dynamics study of the effect of cholesterol on the properties of lipid monolayers at low surface tensions. Phys Chem Chem Phys 11(12):1916–1922. https://doi.org/10.1039/B819767A

    Article  CAS  PubMed  Google Scholar 

  18. Duncan SL, Larson RG (2010) Folding of lipid monolayers containing lung surfactant proteins SP-B1–25 and SP-C studied via coarse-grained molecular dynamics simulations. Biochim Biophys Acta Biomembr 1798(9):1632–1650. https://doi.org/10.1016/j.bbamem.2010.04.006

    Article  CAS  Google Scholar 

  19. Mohammad-Aghaie D, Mace E, Sennoga CA, Seddon JM, Bresme F (2010) Molecular dynamics simulations of liquid condensed to liquid expanded transitions in DPPC monolayers. J Phys Chem B 114(3):1325–1335. https://doi.org/10.1021/jp9061303

    Article  CAS  PubMed  Google Scholar 

  20. Duncan SL, Dalal IS, Larson RG (2011) Molecular dynamics simulation of phase transitions in model lung surfactant monolayers. Biochim Biophys Acta Biomembr 1808(10):2450–2465. https://doi.org/10.1016/j.bbamem.2011.06.026

    Article  CAS  Google Scholar 

  21. Baoukina S, Monticelli L, Risselada HJ, Marrink SJ, Tieleman DP (2008) The molecular mechanism of lipid monolayer collapse. Proc Natl Acad Sci U S A 105(31):10803–10808. https://doi.org/10.1073/pnas.0711563105

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baoukina S, Monticelli L, Amrein M, Tieleman DP (2007) The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations. Biophys J 93(11):3775–3782. https://doi.org/10.1529/biophysj.107.113399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baoukina S, Mendez-Villuendas E, Tieleman DP (2012) Molecular view of phase coexistence in lipid monolayers. J Am Chem Soc 134(42):17543–17553. https://doi.org/10.1021/ja304792p

    Article  CAS  PubMed  Google Scholar 

  24. Hossain SI, Gandhi NS, Hughes ZE, Saha S (2020) The role of SP-B1-25 peptides in lung surfactant monolayers exposed to gold nanoparticles. Phys Chem Chem Phys 22(27):15231–15241. https://doi.org/10.1039/D0CP00268B

    Article  CAS  PubMed  Google Scholar 

  25. Hossain SI, Gandhi NS, Hughes ZE, Gu YT, Saha SC (2019) Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants. Biochim Biophys Acta Biomembr 1861(8):1458–1467. https://doi.org/10.1016/j.bbamem.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  26. Hossain SI, Gandhi NS, Hughes ZE, Saha SC (2019) Computational modelling of the interaction of gold nanoparticle with lung surfactant monolayer. MRS Adv 4(20):1177–1185. https://doi.org/10.1557/adv.2019.93

    Article  CAS  Google Scholar 

  27. Schneemilch M, Quirke N (2010) Molecular dynamics of nanoparticle translocation at lipid interfaces. Mol Simul 36(11):831–835. https://doi.org/10.1080/08927021003775433

    Article  CAS  Google Scholar 

  28. Choe S, Chang R, Jeon J, Violi A (2008) Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle. Biophys J 95(9):4102–4114. https://doi.org/10.1529/biophysj.107.123976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Estrada-Lopez ED, Murce E, Franca MPP, Pimentel AS (2017) Prednisolone adsorption on lung surfactant models: insights on the formation of nanoaggregates, monolayer collapse and prednisolone spreading. RSC Adv 7(9):5272–5281. https://doi.org/10.1039/C6RA28422A

    Article  CAS  Google Scholar 

  30. Hu J, Liu H, Xu P, Shang Y, Liu HJL (2019) Investigation of drug for pulmonary administration–model pulmonary surfactant monolayer interactions using Langmuir–Blodgett monolayer and molecular dynamics simulation: a case study of Ketoprofen. Langmuir 35(41):13452–13460

    Article  CAS  Google Scholar 

  31. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  32. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824

    Article  CAS  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  34. Martini coarse grain forcefield for biomolecules. http://cgmartini.nl/index.php/force-field-parameters. Accessed Jan 2021

  35. Wassenaar TA, Ingolfsson HI, Bockmann RA, Tieleman DP, Marrink SJ (2015) Computational Lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11(5):2144–2155. https://doi.org/10.1021/acs.jctc.5b00209

    Article  CAS  PubMed  Google Scholar 

  36. Romo TD, Grossfield AJ (2011) Block covariance overlap method and convergence in molecular dynamics simulation. J Chem Theory Comput 7(8):2464–2472

    Article  CAS  Google Scholar 

  37. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32(10):2319–2327

    Article  CAS  Google Scholar 

  38. Buchoux SJB (2017) FATSLiM: a fast and robust software to analyze MD simulations of membranes. Bioinformatics 33(1):133–134

    Article  CAS  Google Scholar 

  39. Gapsys V, de Groot BL, Briones RJ (2013) Computational analysis of local membrane properties. J Comput Aided Mol Des 27(10):845–858

    Article  CAS  Google Scholar 

  40. Lukat G, Krüger J, Sommer B (2013) APL@ Voro: a Voronoi-based membrane analysis tool for GROMACS trajectories. J Chem Inf Model 53(11):2908–2925

    Article  CAS  Google Scholar 

  41. Seelig J (1977) Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys 10(3):353–418

    Article  CAS  Google Scholar 

  42. Vermeer LS, de Groot BL, Réat V, Milon A, Czaplicki J (2007) Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J 36(8):919–931. https://doi.org/10.1007/s00249-007-0192-9

    Article  CAS  PubMed  Google Scholar 

  43. Piggot TJ, Allison JR, Sessions RB, Essex JW (2017) On the calculation of acyl chain order parameters from lipid simulations. J Chem Theory Comput 13(11):5683–5696. https://doi.org/10.1021/acs.jctc.7b00643

    Article  CAS  PubMed  Google Scholar 

  44. Petrache HI, Tu K, Nagle JF (1999) Analysis of simulated NMR order parameters for lipid bilayer structure determination. Biophys J 76(5):2479–2487

    Article  CAS  Google Scholar 

  45. Martini coarse grain forcefield for biomolecules. http://www.cgmartini.nl/index.php/downloads/tools/229-do-order. Accessed Jan 2019

  46. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865

    Article  CAS  Google Scholar 

  47. memgen. http://memgen.uni-goettingen.de/. Accessed Apr 2017

  48. MemBuilder-II. http://bioinf.modares.ac.ir/software/mb2/. Accessed Jan 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyne Deplazes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hossain, S.I., Islam, M.Z., Saha, S.C., Deplazes, E. (2022). Drug Meets Monolayer: Understanding the Interactions of Sterol Drugs with Models of the Lung Surfactant Monolayer Using Molecular Dynamics Simulations. In: Cranfield, C.G. (eds) Membrane Lipids. Methods in Molecular Biology, vol 2402. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1843-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1843-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1842-4

  • Online ISBN: 978-1-0716-1843-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics