Skip to main content
Log in

Modulating bilayer mechanical properties to promote the coupled folding and insertion of an integral membrane protein

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Bilayer mechanical properties are not only of crucial importance to the mechanism of action of mechanosensation in lipid membranes but also affect preparative laboratory tasks such as membrane-protein refolding. We report this for coupled refolding and bilayer insertion of outer membrane phospholipase A (OmpLA), an integral membrane enzyme that catalyses the hydrolytic cleavage of glycerophospholipids. OmpLA can be refolded into a variety of detergent micelles and unilamellar vesicles composed of short-chain phospholipids but, in the absence of chemical or molecular chaperones, not into thicker membranes. Controlled modulation of bilayer mechanical properties by judicious use of subsolubilising concentrations of detergents induces monolayer curvature strain, acyl chain fluidisation, membrane thinning, and transient aqueous bilayer defects. This enables quantitative and functional refolding of OmpLA even into bilayer membranes composed of long-chain phospholipids to yield enzymatically active proteoliposomes without requiring membrane solubilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarsman AJ, van Deenen L, van den Bosch H (1976) Studies on lysophospholipases: VII. Synthesis of acylthioester analogs of lysolecithin and their use in a continuous spectrophotometric assay for lysophospholipases, a method with potential applicability to other lipolytic enzymes. Bioorg Chem 5:241–253

    Article  CAS  Google Scholar 

  • Ahyayauch H, Bennouna M, Alonso A, Goñi FM (2010) Detergent effects on membranes at subsolubilizing concentrations: transmembrane lipid motion, bilayer permeabilization, and vesicle lysis/reassembly are independent phenomena. Langmuir 26:7307–7313

    Article  CAS  PubMed  Google Scholar 

  • Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci USA 111:7898–7905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bárány-Wallje E, Keller S, Serowy S, Geibel S, Pohl P, Bienert M, Dathe M (2005) A critical reassessment of penetratin translocation across lipid membranes. Biophys J 89:2513–2521

    Article  PubMed Central  PubMed  Google Scholar 

  • Bennett WF, Sapay N, Tieleman DP (2014) Atomistic simulations of pore formation and closure in lipid bilayers. Biophys J 106:210–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ben-Tal N, Ben-Shaul A, Nicholls A, Honig B (1996) Free-energy determinants of α-helix insertion into lipid bilayers. Biophys J 70:1803–1812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broecker J, Keller S (2013) Impact of urea on detergent micelle properties. Langmuir 29:8502–8510

    Article  CAS  PubMed  Google Scholar 

  • Broecker J, Fiedler S, Gimpl K, Keller S (2014) Polar interactions trump hydrophobicity in stabilizing the self-inserting membrane protein Mistic. J Am Chem Soc 136:13761–13768

    Article  CAS  PubMed  Google Scholar 

  • Burgess NK, Dao TP, Stanley AM, Fleming KG (2008) Protein structure and folding: β-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J Biol Chem 283:26748–26758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danoff EJ, Fleming KG (2015) Membrane defects accelerate outer membrane β-barrel protein folding. Biochemistry 54:97–99

    Article  CAS  PubMed  Google Scholar 

  • Dekker N, Merck K, Tommassen J, Verheij HM (1995) In vitro folding of Escherichia coli outer-membrane phospholipase A. Eur J Biochem 232:214–219

    Article  CAS  PubMed  Google Scholar 

  • Dekker N, Tommassen J, Lustig A, Rosenbusch JP, Verheij HM (1997) Dimerization regulates the enzymatic activity of Escherichia coli outer membrane phospholipase A. J Biol Chem 272:3179–3184

    Article  CAS  PubMed  Google Scholar 

  • Dewald AH, Hodges JC, Columbus L (2011) Physical determinants of β-barrel membrane protein folding in lipid vesicles. Biophys J 100:2131–2140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doi O, Oki M, Nojima S (1972) Two kinds of phospholipase A and lysophospholipase in Escherichia coli. Biochim Biophys Acta 260:244–258

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Fleming PJ, Freites JA, Moon CP, Tobias DJ, Fleming KG (2012) Outer membrane phospholipase A in phospholipid bilayers: a model system for concerted computational and experimental investigations of amino acid side chain partitioning into lipid bilayers. Biochim Biophys Acta 1818:126–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frotscher E, Danielczak B, Vargas C, Meister A, Durand G, Keller S (2015a) A fluorinated detergent for membrane-protein applications. Angew Chem Int Ed 54:5069–5073

    Article  CAS  Google Scholar 

  • Frotscher E, Danielczak B, Vargas C, Meister A, Durand G, Keller S (2015b) Ein fluoriertes Detergens für Membranprotein-Anwendungen. Angew Chem 127:5158–5162

    Article  Google Scholar 

  • Geertsma ER, Nik Mahmood NA, Schuurman-Wolters GK, Poolman B (2008) Membrane reconstitution of ABC transporters and assays of translocator function. Nat Protoc 3:256–266

    Article  CAS  PubMed  Google Scholar 

  • Gessmann D, Chung YH, Danoff EJ, Plummer AM, Sandlin CW, Zaccai NR, Fleming KG (2014) Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc Natl Acad Sci USA 111:5878–5883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hauser H, Barratt MD (1973) Effect of chain length on the stability of lecithin bilayers. Biochem Biophys Res Comm 53:399–405

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz H (2008) Interactions of surfactants with lipid membranes. Q Rev Biophys 41:205–264

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz H, Tsamaloukas AD, Keller S (2009) Monitoring detergent-mediated solubilization and reconstitution of lipid membranes by isothermal titration calorimetry. Nat Protoc 4:686–697

    Article  CAS  PubMed  Google Scholar 

  • Heimburg T (2007) Thermal biophysics of membranes, Wiley, Weinheim, pp 289–300

  • Inouye M, Yee ML (1973) Homogeneity of envelope proteins of Escherichia coli separated by gel electrophoresis in sodium dodecyl sulphate. J Bacteriol 113:304–312

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karlovská J, Lohner K, Degovics G, Lacko I, Devínsky F, Balgavý P (2004) Effects non-ionic surfactants N-alkyl-N,N-dimethylamine-N-oxides on the structure of a phospholipid bilayer: small-angle X-ray diffraction study. Chem Phys Lipids 129:31–41

    Article  PubMed  Google Scholar 

  • Keller S, Böthe M, Bienert M, Dathe M, Blume A (2007) A simple fluorescence-spectroscopic membrane translocation assay. ChemBioChem 8:546–552

    Article  CAS  PubMed  Google Scholar 

  • Keller S, Vargas C, Zhao H, Piszczek G, Brautigam CA, Schuck P (2012) High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal Chem 84:5066–5073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klingler J, Vargas C, Fiedler S, Keller S (2015) Preparation of ready-to-use small unilamellar phospholipid vesicles by ultrasonication with a beaker resonator. Anal Biochem 477:10–12

    Article  CAS  PubMed  Google Scholar 

  • Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329

    Article  CAS  PubMed  Google Scholar 

  • le Maire M, Champeil P, Møller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111

    Article  PubMed  Google Scholar 

  • Lichtenberg D, Ahyayauch H, Goñi FM (2013) The mechanism of detergent solubilization of lipid bilayers. Biophys J 105:289–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lundbaek JA, Andersen OS (1994) Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J Gen Physiol 104:645–673

    Article  CAS  PubMed  Google Scholar 

  • Martinac B, Nomura T, Chi G, Petrov E, Rohde PR, Battle AR, Foo A, Constantine M, Rothnagel R, Carne S, Deplazes E, Cornell B, Cranfield CG, Hankamer B, Landsberg MJ (2014) Bacterial mechanosensitive channels: models for studying mechanosensory transduction. Antioxid Redox Signal 20:952–969

    Article  CAS  PubMed  Google Scholar 

  • Maurya SR, Chaturvedi D, Mahalakshmi R (2013) Modulating lipid dynamics and membrane fluidity to drive rapid folding of a transmembrane barrel. Sci Rep 3:1989

    Article  PubMed Central  PubMed  Google Scholar 

  • Moe P, Blount P (2005) Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups. Biochemistry 44:12239–12244

    Article  CAS  PubMed  Google Scholar 

  • Moon CP, Fleming KG (2011) Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. Proc Natl Acad Sci USA 108:10174–10177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moon CP, Kwon S, Fleming KG (2011) Overcoming hysteresis to attain reversible equilibrium folding for outer membrane phospholipase A in phospholipid bilayers. J Mol Biol 413:484–494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukherjee N, Jose MD, Birkner JP, Walko M, Ingólfsson HI, Dimitrova A, Arnarez C, Marrink SJ, Koçer A (2014) The activation of the mechanosensitive ion channel, MscL, by lysophosphatidylcholine differs from tension-induced gating. FASEB J 28:4292–4302

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Mizushima S (1976) Effects of heating in dodecyl sulfate solution on the conformation and electrophoretic mobility of isolated major outer membrane proteins from Escherichia coli K-12. J Biochem 80:1411–1422

    CAS  PubMed  Google Scholar 

  • Nazari M, Kurdi M, Heerklotz H (2012) Classifying surfactants with respect to their effect on lipid membrane order. Biophys J 102:498–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pantaler E, Kamp D, Haest CWM (2000) Acceleration of phospholipid flip–flop in the erythrocyte membrane by detergents differing in polar head group and alkyl chain length. Biochim Biophys Acta 1509:397–408

    Article  CAS  PubMed  Google Scholar 

  • Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 68:997–1008

    Google Scholar 

  • Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13:432–442

    Article  CAS  PubMed  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703

    Article  CAS  PubMed  Google Scholar 

  • Phillips MC, Williams RM, Chapman D (1969) On the nature of hydrocarbon chain motions in lipid liquid crystals. Chem Phys Lipids 3:234–244

    Article  CAS  Google Scholar 

  • Rigaud JL, Lévy D (2003) Reconstitution of membrane proteins into liposomes. Methods Enzymol 372:65–86

    Article  CAS  PubMed  Google Scholar 

  • Scandella CJ, Kornberg A (1971) A membrane-bound phospholipase A1 purified from Escherichia coli. Biochemistry 10:4447–4456

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Sugii T, Takagi S, Matsumoto Y (2005) A molecular-dynamics study of lipid bilayers: effects of the hydrocarbon chain length on permeability. J Chem Phys 123:184714

    Article  PubMed  Google Scholar 

  • Sukharev S (2002) Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys J 83:290–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelop: solubilization and functional reconstitution. Biophys J 65:177–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Textor M, Vargas C, Keller S (2015) Calorimetric quantification of linked equilibria in cyclodextrin/lipid/detergent mixtures for membrane-protein reconstitution. Methods 76:183–193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Carolyn Vargas (University of Kaiserslautern) for helpful comments on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through International Research Training Group IRTG 1830 and by the Research Initiative BioComp.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Keller.

Additional information

Special issue: Biophysics of Mechanotransduction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, M., Danielczak, B., Textor, M. et al. Modulating bilayer mechanical properties to promote the coupled folding and insertion of an integral membrane protein. Eur Biophys J 44, 503–512 (2015). https://doi.org/10.1007/s00249-015-1032-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1032-y

Keywords

Navigation