Skip to main content
Log in

Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Wheat quality factors are critical in determining the suitability of wheat (Triticum aestivum L.) for end-use product and economic value, and they are prime targets for marker-assisted selection. Objectives of this study were to identify quantitative trait loci (QTLs) that ultimately influence wheat market class and milling quality. A population of 132 F12 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between the Chinese hard wheat line Ning7840 and the soft wheat cultivar Clark and grown at three Oklahoma locations from 2001 to 2003. Milling factors such as test weight (volumetric grain weight, TW), kernel weight (KW), and kernel diameter (KD) and market class factors such as wheat grain protein content (GPC) and kernel hardness index (HI) were characterized on the basis of a genetic map constructed from 367 SSR and 241 AFLP markers covering all 21 chromosomes. Composite interval mapping identified eight QTLs for TW, seven for KW, six for KD, two each for GPC and HI measured by near-infrared reflectance (NIR) spectroscopy, and four for HI measured by single kernel characterization system. Positive phenotypic correlations were found among milling factors. Consistent co-localized QTLs were identified for TW, KW, and KD on the short arms of chromosomes 5A and 6A. A common QTL was identified for TW and KD on the long arm of chromosome 5A. A consistent major QTL for HI peaked at the Pinb-D1 locus on the short arm of chromosome 5D and explained up to 85% of the phenotypic variation for hardness. We identified QTLs for GPC on 4B and the short arm of 3A chromosomes. The consistency of quality factor QTLs across environments reveals their potential for marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Assoc. Cereal Chem (1995) Approved methods, 9th edn. AACC, St. Paul

    Google Scholar 

  • Ammiraju JSS, Dholakia BB, Santra DK, Singh H, Lagu MD, Tamhankar SA, Dhaliwal HS, Rao VS, Gupta VS, Ranjekar PK (2001) Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet 102:726–732

    Article  CAS  Google Scholar 

  • Bai G-H, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89:343–348

    Article  CAS  PubMed  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci for agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Briggle LW, Reitz LP (1963) Classification of Triticum species and of wheat varieties grown in the United States. ARS-USDA, Washington

    Google Scholar 

  • Bushuk W (1998) Wheat breeding for end-product use. Euphytica 100:137–145

    Article  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    CAS  Google Scholar 

  • Campbell KG, Finney PL, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Siritunga D, Zhu J-Q, Gendre F, Roué C, Vérel A, Sorrells ME (2001) Quantitative trait loci associated with milling and baking quality in a soft × hard wheat cross. Crop Sci 41:1275–1285

    Article  CAS  Google Scholar 

  • Carver BF (1994) Genetic implications of kernel NIR hardness on milling and flour quality in bread wheat. J Sci Food Agric 65:125–132

    Article  Google Scholar 

  • Cuthbert JL, Somers DJ, Brule-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608

    Article  CAS  PubMed  Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS, Dhaliwal HS, Ranjekar PK, Gupta VS, Weber WE (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395

    Article  CAS  Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between the grain protein content QTL region in wheat chromosome arm 6BS and rice chromosome 2. Funct Integr Genomics 4:59–66

    Article  CAS  PubMed  Google Scholar 

  • Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum × Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413

    Article  CAS  PubMed  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  CAS  PubMed  Google Scholar 

  • Galande AA, Tiwari R, Ammiraju JSS, Santra DK, Laga MD, Rao VS, Gupta VS, Misra BK, Nagarajan S, Ranjekar PK (2001) Genetic analysis of kernel hardness in bread wheat using PCR-based markers. Theor Appl Genet 103:601–606

    Article  CAS  Google Scholar 

  • Gibson LR, McCluskey PJ, Tilley KA, Paulsen GM (1998) Quality of hard red winter wheat grown under high temperature conditions during maturation and ripening. Cereal Chem 75:421–427

    Article  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci 95:6262–6266

    Article  CAS  PubMed  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield, and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    CAS  PubMed  Google Scholar 

  • Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of the transferability of microsatellite derived from Triticum taushchii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744

    Article  PubMed  CAS  Google Scholar 

  • Huang X-Q, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a double haploid population derived from two Canidian wheats (Triticum aestivium L.). Theor Appl Genet 113:753–766

    Article  CAS  PubMed  Google Scholar 

  • Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter AR, Marcucci-Poltri S, Frohberg R, Dubcovsky J (2000) Development of PCR-based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci 40:518–524

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lillemo M, Ringlund K (2002) Impact of puroindoline b alleles on the genetic variation for hardness in soft × hard wheat crosses. Plant Breed 121:210–217

    Article  CAS  Google Scholar 

  • Liu S, Cai S, Graybosch R, Chen C, Bai G (2008) Quantitative trait loci for resistance to pre-harvest sprouting in U.S. hard white winter wheat Rio Blanco. Theor Appl Genet 117:691–699

    Article  CAS  PubMed  Google Scholar 

  • Marshall DR, Ellison FW, Mares DJ (1984) Effects of grain shape and size on milling yields in wheat. I Theoretical analysis based on simple geometric models. Aust J Agric Res 35:619–630

    Article  Google Scholar 

  • Martin JM, Frohberg RC, Morris CF, Talbert LE, Giroux MJ (2001) Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci 41:228–234

    CAS  Google Scholar 

  • Marza F, Bai G-H, Carver BF, Zhou W-C (2006) Integrated QTL mapping for yield and related traits in wheat population: Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  CAS  PubMed  Google Scholar 

  • Morris GF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647

    Article  CAS  PubMed  Google Scholar 

  • Morris CF, Rose SP (1996) Wheat. In: Henry RJ, Kettlewell PS (eds) Cereal grain quality. Chapman & Hall, London

    Google Scholar 

  • Ohm HW, Shaner G, Foster JE, Patterson FL, Buechley G (1988) Registration of ‘Clark’ wheat. Crop Sci 28:1031–1032

    Article  Google Scholar 

  • Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107:1243–1251

    Article  CAS  PubMed  Google Scholar 

  • Pestsova EG, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D-genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Prasad, M, Varshney RK, Kumar A, Balyan HS, Sharma PC, Edwards KJ, Singh H, Dhaliwal HS, Roy JK, Gupta PK (1999) A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet 99:341–345

    Google Scholar 

  • Röder MS, Korsun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Schuler SF, Bacon RK, Gbur EE (1994) Kernel and spike character influence on test weight of soft red winter wheat. Crop Sci 34:1309–1313

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Perretant MR, Charment G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    Article  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot/Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) Joinmap 3.0 software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Varshney RK, Prasad M, Roy JK, Kumar N, Singh H, Dhaliwal HS, Balyan HS, Gupta PK (2000) Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet 100:1290–1294

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2004) Windows QTL cartographer. Version 2.0. Department of Statistics, North Carolina State Univ, Raleigh

    Google Scholar 

  • Wiersma JJ, Busch RH, Fulcher GG, Hareland GA (2001) Recurrent selection for kernel weight in spring wheat. Crop Sci 41:999–1005

    Article  Google Scholar 

  • Wrigley CW, Asenstorfer R, Batey I, Cornish G, Day L, Mares D, Mrva K (2009) The biochemical and molecular basis of wheat quality. In: Carver BF (ed) Wheat: science and trade. Wiley, Ames

    Google Scholar 

  • Yamazaki WT, Briggle LW (1969) Components of test weight in soft wheat. Crop Sci 9:457–459

    Article  Google Scholar 

  • Yan W, Kang MS (2003) GGE biplot analysis, a graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton

    Google Scholar 

  • Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M (2001) Genetic analysis of bread-making quality in wheat and spelt. Plant Breed 120:13–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contributions of Gregory Shaner, Purdue University (RIL population development), and Wayne Whitmore and Connie Shelton for technical assistance in the field experiments and quality trait analysis. This project is partly funded by the NRI of the USDA CSREES, CAP Grant number 2006-55606-16629. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. Contribution no. 09-254-J from the Kansas Agricultural Experiment Station, Manhattan, Kansas, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brett F. Carver or Guihua Bai.

Additional information

Communicated by M. Bohn.

X. Sun and F. Marza contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Marza, F., Ma, H. et al. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theor Appl Genet 120, 1041–1051 (2010). https://doi.org/10.1007/s00122-009-1232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1232-x

Keywords

Navigation