Skip to main content
Log in

Understanding of the major reactions in solution synthesis of functional nanomaterials

理解纳米材料在液相合成中的主要反应

  • Review
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

This review covers the major reactions involved in the solution synthesis of nanomaterials. It was designed to classify the traditional strategies such as precipitation, reduction, seed growth, etching, and so on into two basic processes which are termed as bottom-up and top-down routines. The discussion is focused on the basic mechanism and principles during the nucleation and growth of nanocrystals, especially in the solution system. This review also presents a prediction for how to utilize these intrinsic processes to artificially construct the desired specific and functional nanostructures. We try to describe the most directive and effective way to control the structures of nanocrystals for researchers who can master the major reaction mechanism and grasp the basic technologies in synthetic nanoscience.

摘要

本综述涵盖了涉及纳米材料液相合成的主要反应, 将沉淀法、还原法、晶种生长法、刻蚀法等传统策略分为自下而上和自上而下 两个基本过程. 主要集中讨论了纳米晶成核与生长(尤其在液相体系中)的基本机理和原则. 本文也预测了如何利用这些纳米合成的基本规 律去构造所需的具有特定结构的、功能性的纳米结构. 在合成纳米科学中, 如果研究人员可以熟练掌握主要反应机理、抓住基本技术, 便 可以用更直接、有效的方法去控制纳米晶的结构.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang X, Peng Q, Li Y. Interface-mediated growth of monodispersed nanostructures. Acc Chem Res, 2007, 40: 635–643

    Article  Google Scholar 

  2. Xia Y, Xiong Y, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed, 2009, 48: 60–103

    Article  Google Scholar 

  3. Lim B, Xia Y. Metal nanocrystals with highly branched morphologies. Angew Chem Int Ed, 2011, 50: 76–85

    Article  Google Scholar 

  4. Zhang H, Jin M, Xia Y. Noble-metal nanocrystals with concave surfaces: synthesis and applications. Angew Chem Int Ed, 2012, 51: 7656–7673

    Article  Google Scholar 

  5. Xiong Y, Wiley BJ, Xia Y. Nanocrystals with unconventional shapes—a class of promising catalysts. Angew Chem Int Ed, 2007, 46: 7157–7159

    Article  Google Scholar 

  6. Zhou ZY, Tian N, Li JT, et al. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev, 2011, 40: 4167–4185

    Article  Google Scholar 

  7. Quan Z, Wang Y, Fang J. High-index faceted noblemetal nanocrystals. Acc Chem Res, 2013, 46: 191–202

    Article  Google Scholar 

  8. Chen M, Wu B, Yang J, et al. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv Mater, 2012, 24: 862–879

    Article  Google Scholar 

  9. Liu Y, Goebl J, Yin Y. Templated synthesis of nanostructured materials. Chem Soc Rev, 2013, 42: 2610–2653

    Article  Google Scholar 

  10. Chiu CY, Ruan L, Huang Y. Biomolecular specificity controlled nanomaterial synthesis. Chem Soc Rev, 2013, 42: 2512–2527

    Article  Google Scholar 

  11. Shi W, Song S, Zhang H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev, 2013, 42: 5714–5743

    Article  Google Scholar 

  12. Modeshia DR, Walton RI. Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem Soc Rev, 2010, 39: 4303–4325

    Article  Google Scholar 

  13. Nadagouda MN, Speth TF, Varma RS. Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res, 2011, 44: 469–478

    Article  Google Scholar 

  14. Xu H, Zeiger BW, Suslick KS. Sonochemical synthesis of nanomaterials. Chem Soc Rev, 2013, 42: 2555–2567

    Article  Google Scholar 

  15. Tong G, Guan J, Xiao Z, et al. In situ generated gas bubble-assisted modulation of the morphologies, photocatalytic, and magnetic properties of ferric oxide nanostructures synthesized by thermal decomposition of iron nitrate. J Nanopart Res, 2010, 12: 3025–3037

    Article  Google Scholar 

  16. Stoner EC, Wohlfarth EP. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc A-Math Phys Eng Scis, 1948, 240: 599–642

    Article  Google Scholar 

  17. Ku JY, Aruguete DM, Alivisatos AP, et al. Self-assembly of magnetic nanoparticles in evaporating solution. J AmChem Soc, 2011, 133: 838–848

    Article  Google Scholar 

  18. Alphandéry E, Ding Y, Ngo AT, et al. Assemblies of aligned magnetotactic bacteria and extracted magnetosomes: what is the main factor responsible for the magnetic anisotropy? ACS Nano, 2009, 3: 1539–1547

    Article  Google Scholar 

  19. Petit C, Russier V, Pileni MP. Effect of the structure of cobalt nanocrystal organization on the collective magnetic properties. J Phys Chem B, 2003, 107: 10333–10336

    Article  Google Scholar 

  20. La Mer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc, 1950, 72: 4847–4854

    Article  Google Scholar 

  21. Auer S, Frenkel D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature, 2001, 409: 1020–1023

    Article  Google Scholar 

  22. Erdemir D, Lee AY, Myerson AS. Nucleation of crystals from solution: classical and two-step models. Acc Chem Res, 2009, 42: 621–629

    Article  Google Scholar 

  23. Wolde PR. Enhancement of protein crystal nucleation by critical density fluctuations. Science, 1997, 277: 1975–1978

    Article  Google Scholar 

  24. Nicolis G, Nicolis C. Enhancement of the nucleation of protein crystals by the presence of an intermediate phase: a kinetic model. Phys A-Statistical Mech its Appl, 2003, 323: 139–154

    Article  Google Scholar 

  25. Gavezzotti A. Molecular aggregation of acetic acid in a carbon tetrachloride solution: a molecular dynamics study with a view to crystal nucleation. Chem Eur J, 1999, 5: 567–576

    Article  Google Scholar 

  26. Talanquer V, Oxtoby DW. Crystal nucleation in the presence of a metastable critical point. J Chem Phys, 1998, 109: 223–227

    Article  Google Scholar 

  27. Peng X, Wickham J, Alivisatos AP. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc, 1998, 120: 5343–5344

    Article  Google Scholar 

  28. Peng ZA, Peng X. Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc, 2001, 123: 1389–1395

    Article  Google Scholar 

  29. Peng ZA, Peng X. Nearlymonodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc, 2002, 124: 3343–3353

    Article  Google Scholar 

  30. Thessing J, Qian J, Chen H, et al. Interparticle influence on size/size distribution evolution of nanocrystals. J Am Chem Soc, 2007, 129: 2736–2737

    Article  Google Scholar 

  31. Lin Z, Gilbert B, Liu Q, et al. A thermodynamically stable nanophase material. J Am Chem Soc, 2006, 128: 6126–6131

    Article  Google Scholar 

  32. Zhang J, Lin Z, Lan Y, et al. Amultistep oriented attachment kinetics: coarsening of ZnS nanoparticle in concentrated NaOH. J Am Chem Soc, 2006, 128: 12981–12987

    Article  Google Scholar 

  33. Li S, Xie T, Peng Q, et al. Nucleation and growth of CeF3 and NaCeF4 nanocrystals. Chem Eur J, 2009, 15: 2512–2517

    Article  Google Scholar 

  34. Xie T, Li S, Peng Q, et al. Monodisperse BaF2 nanocrystals: phases, size transitions, and self-assembly. Angew Chem Int Ed, 2009, 48: 196–200

    Article  Google Scholar 

  35. Xie T, Li S, Wang W, et al. Nucleation and growth of BaFxCl2-x nanorods. Chem Eur J, 2008, 14: 9730–9735

    Article  Google Scholar 

  36. Wu Y, Wang D, Li Y. Nanocrystals from solutions: catalysts. Chem Soc Rev, 2014, 43: 2112–2124

    Article  Google Scholar 

  37. Hulliger J. Chemistry and crystal growth. Angew Chem Int Ed, 1994, 33: 143–162

    Article  Google Scholar 

  38. Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays formonitoring autophagy. Autophagy, 2002, 8: 445–544

    Article  Google Scholar 

  39. Manna L, Scher EC, Alivisatos AP. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc, 2000, 122: 12700–12706

    Article  Google Scholar 

  40. Peng ZA, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc, 2001, 123: 183–184

    Article  Google Scholar 

  41. Lee JH, Huh YM, Jun Y, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med, 2007, 13: 95–99

    Article  Google Scholar 

  42. Dai Y, Zhang Y, Li QK, et al. Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem Phys Lett, 2002, 358: 83–86

    Article  Google Scholar 

  43. Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed, 2006, 45: 4597–4601

    Article  Google Scholar 

  44. Xia X, Zeng J, McDearmon B, et al. Silver nanocrystals with concave surfaces and their optical and surface-enhanced raman scattering properties. Angew Chem, 2011, 123: 12750–12754

    Article  Google Scholar 

  45. Tian N, Zhou ZY, Sun SG, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732–735

    Article  Google Scholar 

  46. Fan Z, Huang X, Han Y, et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat Commun, 2015, 6: 6571

    Article  Google Scholar 

  47. Bort H, Jüttner K, Lorenz WJ, et al. Underpotential alloy formation in the system Ag(hkl)/Cd2+. Electrochim Acta, 1983, 28: 993–1001

    Article  Google Scholar 

  48. Wang Y, Wan D, Xie S, et al. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano, 2013, 7: 4586–4594

    Article  Google Scholar 

  49. Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev, 2012, 41: 666–686

    Article  Google Scholar 

  50. Huang X, Zeng Z, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev, 2013, 42: 1934–1946

    Article  Google Scholar 

  51. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev, 2010, 110: 132–145

    Article  Google Scholar 

  52. Haruta M. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal, 1989, 115: 301–309

    Article  Google Scholar 

  53. Valden M. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281: 1647–1650

    Article  Google Scholar 

  54. Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev, 2012, 112: 6027–6053

    Article  Google Scholar 

  55. Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A, 2005, 74A: 49–58

    Article  Google Scholar 

  56. Dreyer DR, Park S, Bielawski CW, et al. The chemistry of graphene oxide. Chem Soc Rev, 2010, 39: 228–240

    Article  Google Scholar 

  57. Loh KP, Bao Q, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem, 2010, 2: 1015–1024

    Article  Google Scholar 

  58. Zhang H, Jin M, Xiong Y, et al. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res, 2013, 46: 1783–1794

    Article  Google Scholar 

  59. Schwartz-Duval AS, Misra SK, Mukherjee P, et al. An anisotropic propagation technique for synthesizing hyperbranched polyvillic gold nanoparticles. Nano Res, 2016

    Google Scholar 

  60. Fang Z, Zhang Y, Du F, et al. Growth of anisotropic platinum nanostructures catalyzed by gold seed nanoparticles. Nano Res, 2008, 1: 249–257

    Article  Google Scholar 

  61. Xu X, Lu Y, Yang Y, et al. Tuning the growth of metal-organic framework nanocrystals by using polyoxometalates as coordination modulators. Sci China Mater, 2015, 58: 370–377

    Article  Google Scholar 

  62. Niu Z, LiY. Removal and utilization of capping agents in nanocatalysis. Chem Mater, 2014, 26: 72–83

    Article  Google Scholar 

  63. Huang X, Tang S, Mu X, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotech, 2011, 6: 28–32

    Article  Google Scholar 

  64. Zeng J, Zheng Y, Rycenga M, et al. Controlling the shapes of silver nanocrystals with different capping agents. J Am Chem Soc, 2010, 132: 8552–8553

    Article  Google Scholar 

  65. Dou L, Wong AB, Yu Y, et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349: 1518–1521

    Article  Google Scholar 

  66. Wang ZL. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B, 2000, 104: 1153–1175

    Article  Google Scholar 

  67. Wiley B, Sun Y, Mayers B, et al. Shape-controlled synthesis ofmetal nanostructures: the case of silver. Chem Eur J, 2005, 11: 454–463

    Article  Google Scholar 

  68. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growthmethod. Chem Mater, 2003, 15: 1957–1962

    Article  Google Scholar 

  69. Wadams RC, Fabris L, Vaia RA, et al. Time-dependent susceptibility of the growth of gold nanorods to the addition of a cosurfactant. Chem Mater, 2013, 25: 4772–4780

    Article  Google Scholar 

  70. Ye X, Jin L, Caglayan H, et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano, 2012, 6: 2804–2817

    Article  Google Scholar 

  71. Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev, 2006, 35: 209–217

    Article  Google Scholar 

  72. Murphy CJ, Gole AM, Stone JW, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res, 2008, 41: 1721–1730

    Article  Google Scholar 

  73. Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squa-mous cell carcinoma in mice. Cancer Lett, 2008, 269: 57–66

    Article  Google Scholar 

  74. Hu M, Chen J, Li ZY, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev, 2006, 35: 1084–1094

    Article  Google Scholar 

  75. Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev, 2007, 107: 4797–4862

    Article  Google Scholar 

  76. Jones MR, Osberg KD, Macfarlane RJ, et al. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev, 2011, 111: 3736–3827

    Article  Google Scholar 

  77. Xiong Y, Cai H, Wiley BJ, et al. Synthesis and mechanistic study of palladium nanobars and nanorods. J Am Chem Soc, 2007, 129: 3665–3675

    Article  Google Scholar 

  78. Huang X, Zhang H, Guo C, et al. Simplifying the creation of hollow metallic nanostructures: one-pot synthesis of hollow palladium/ platinum single-crystalline nanocubes. Angew Chem, 2009, 121: 4902–4906

    Article  Google Scholar 

  79. Li C, Sato R, Kanehara M, et al. Controllable polyol synthesis of uniform palladium icosahedra: effect of twinned structure on deformation of crystalline lattices. Angew Chem, 2009, 121: 7015–7019

    Article  Google Scholar 

  80. Huang X, Zheng N. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J Am Chem Soc, 2009, 131: 4602–4603

    Article  Google Scholar 

  81. Bratlie KM, Lee H, Komvopoulos K, et al. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett, 2007, 7: 3097–3101

    Article  Google Scholar 

  82. Sneed BT, Kuo CH, Brodsky CN, et al. Iodide-mediated control of rhodium epitaxial growth on well-defined noble metal nanocrystals: synthesis, characterization, and structure-dependent catalytic properties. J Am Chem Soc, 2012, 134: 18417–18426

    Article  Google Scholar 

  83. Sneed BT, Brodsky CN, Kuo CH, et al. Nanoscale-phase-separated Pd–Rh boxes synthesized via metal migration: an archetype for studying lattice strain and composition effects in electrocatalysis. J Am Chem Soc, 2013, 135: 14691–14700

    Article  Google Scholar 

  84. Yin AX, Liu WC, Ke J, et al. Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: controlled synthesis and DFT calculations. J Am Chem Soc, 2012, 134: 20479–20489

    Article  Google Scholar 

  85. Gu J, Zhang YW, Tao FF. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem Soc Rev, 2012, 41: 8050–8065

    Article  Google Scholar 

  86. Yu JH, Joo J, Park HM, et al. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachmentmechanism. J AmChem Soc, 2005, 127: 5662–5670

    Article  Google Scholar 

  87. Huang X, Li S, Huang Y, et al. Synthesis of hexagonal close-packed gold nanostructures. Nat Commun, 2011, 2: 292

    Article  Google Scholar 

  88. Zitoun D, Pinna N, Frolet N, et al. Single crystal manganese oxide multipods by oriented attachment. J Am Chem Soc, 2005, 127: 15034–15035

    Article  Google Scholar 

  89. Penn RL. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 281: 969–971

    Article  Google Scholar 

  90. Penn RL, Banfield JF. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases; insights from nanocrystalline TiO2. Am Miner, 1998, 83: 1077–1082

    Article  Google Scholar 

  91. Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed, 2002, 41: 1188–1191

    Article  Google Scholar 

  92. Banfield JF. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 2000, 289: 751–754

    Article  Google Scholar 

  93. Cho KS, Talapin DV, GaschlerW, et al. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. JAm Chem Soc, 2005, 127: 7140–7147

    Article  Google Scholar 

  94. Halder A, Ravishankar N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv Mater, 2007, 19: 1854–1858

    Article  Google Scholar 

  95. Zhang Q, Liu SJ, Yu SH. Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J Mater Chem, 2009, 19: 191–207

    Article  Google Scholar 

  96. Zhang X, Xie Y. Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem Soc Rev, 2013, 42: 8187–8199

    Article  Google Scholar 

  97. Zhang X, Zhang J, Zhao J, et al. Half-metallic ferromagnetism in synthetic Co9Se8 nanosheets with atomic thickness. J Am Chem Soc, 2012, 134: 11908–11911

    Article  Google Scholar 

  98. Schliehe C, Juarez BH, Pelletier M, et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science, 2010, 329: 550–553

    Article  Google Scholar 

  99. Duan H, Yan N, Yu R, et al. Ultrathin rhodium nanosheets. Nat Commun, 2014, 5: 3093

    Google Scholar 

  100. Hu S, Wang X. Ultrathin nanostructures: smaller size with new phenomena. Chem Soc Rev, 2013, 42: 5577–5594

    Article  Google Scholar 

  101. Delahay P, Tobias CW, Gerischer H. Advances in Electrochemistry and Electrochemical Engineering, Vol. 11. New York: John Wiley and Sons, 1978: 446

    Google Scholar 

  102. Sudha V, Sangaranarayanan MV. Underpotential deposition of metals: structural and thermodynamic considerations. J Phys Chem B, 2002, 106: 2699–2707

    Article  Google Scholar 

  103. Bockris JOM, Reddy AKN. Modern Electrochemistry: an Introduction to an Interdisciplinary Area. Berlin: Springer Science & Business Media, 2012

    Google Scholar 

  104. Personick ML, Langille MR, Zhang J, et al. Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett, 2011, 11: 3394–3398

    Article  Google Scholar 

  105. Zhang L, Zhang J, Kuang Q, et al. Cu2+-assisted synthesis of hexoctahedral Au–Pd alloy nanocrystals with high-index facets. J Am Chem Soc, 2011, 133: 17114–17117

    Article  Google Scholar 

  106. Herrero E, Buller LJ, Abruña HD. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem Rev, 2001, 101: 1897–1930

    Article  Google Scholar 

  107. Jackson SR, McBride JR, Rosenthal SJ, et al. Where’s the silver? Imaging trace silver coverage on the surface of gold nanorods. J Am Chem Soc, 2014, 136: 5261–5263

    Article  Google Scholar 

  108. Ge J, He D, Bai L, et al. Ordered porous Pd octahedra covered with monolayer Ru atoms. J Am Chem Soc, 2015, 137: 14566–14569

    Article  Google Scholar 

  109. Sun S. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287: 1989–1992

    Article  Google Scholar 

  110. Fan Z, Bosman M, Huang X, et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat Commun, 2015, 6: 7684

    Article  Google Scholar 

  111. Liu X, Luo J, Zhu J. Size effect on the crystal structure of silver nanowires. Nano Lett, 2006, 6: 408–412

    Article  Google Scholar 

  112. Ling T, Xie L, Zhu J, et al. Icosahedral face-centered cubic Fe nanoparticles: facile synthesis and characterization with aberration-corrected TEM. Nano Lett, 2009, 9: 1572–1576

    Article  Google Scholar 

  113. Kim C, Kim C, Lee K, et al. Shaped Ni nanoparticles with an unconventional hcp crystalline structure. Chem Commun, 2014, 50: 6353–6356

    Article  Google Scholar 

  114. Kusada K, Kobayashi H, Yamamoto T, et al. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reductionmethod. JAmChem Soc, 2013, 135: 5493–5496

    Article  Google Scholar 

  115. Li Y, Cheng H, Yao T, et al. Hexane-driven icosahedral to cuboctahedral structure transformation of gold nanoclusters. J Am Chem Soc, 2012, 134: 17997–18003

    Article  Google Scholar 

  116. Fan Z, Zhu Y, Huang X, et al. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets. Angew Chem Int Ed, 2015, 54: 5672–5676

    Article  Google Scholar 

  117. Zhang S, Guo S, Zhu H, et al. Structure-induced enhancement in electrooxidation of trimetallic FePtAu nanoparticles. J Am Chem Soc, 2012, 134: 5060–5063

    Article  Google Scholar 

  118. Yao Y, He DS, Lin Y, et al. Modulating fcc and hcp ruthenium on the surface of palladium-copper alloy through tunable lattice mismatch. Angew Chem Int Ed, 2016, 55: 5501–5505

    Article  Google Scholar 

  119. Fan Z, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem Soc Rev, 2016, 45: 63–82

    Article  Google Scholar 

  120. Langille MR, Personick ML, Zhang J, et al. Bottom-up synthesis of gold octahedra with tailorable hollow features. J Am Chem Soc, 2011, 133: 10414–10417

    Article  Google Scholar 

  121. Wang Y, Xia Y. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett, 2004, 4: 2047–2050

    Article  Google Scholar 

  122. Zhang G, Jin X, Li H, et al. N-doped crumpled graphene: bottom-up synthesis and its superior oxygen reduction performance. Sci China Mater, 2016, 59: 337–347

    Google Scholar 

  123. Zhuang Z, Peng Q, Li Y. Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem Soc Rev, 2011, 40: 5492–5513

    Article  Google Scholar 

  124. Lesnyak V, Gaponik N, Eychmüller A. Colloidal semiconductor nanocrystals: the aqueous approach. Chem Soc Rev, 2013, 42: 2905–2929

    Article  Google Scholar 

  125. Kershaw SV, Susha AS, Rogach AL. Narrow bandgap colloidal metal chalcogenide quantumdots: syntheticmethods, heterostructures, assemblies, electronic and infrared optical properties. Chem Soc Rev, 2013, 42: 3033–3087

    Article  Google Scholar 

  126. Gao MR, Xu YF, Jiang J, et al. Nanostructuredmetal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev, 2013, 42: 2986–3017

    Article  Google Scholar 

  127. Nirmal M, Dabbousi BO, Bawendi MG, et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 1996, 383: 802–804

    Article  Google Scholar 

  128. Ekimov AI, Efros AL, Onushchenko AA. Quantum size effect in semiconductor microcrystals. Solid State Commun, 1985, 56: 921–924

    Article  Google Scholar 

  129. Li Z, Yu R, Huang J, et al. Platinum–nickel frame within metalorganic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nat Commun, 2015, 6: 8248

    Article  Google Scholar 

  130. Zhuang Z, Peng Q, Wang X, et al. Tetrahedral colloidal crystals of Ag2S nanocrystals. Angew Chem, 2007, 119: 8322–8325

    Article  Google Scholar 

  131. Zhuang Z, Peng Q, Zhang B, et al. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice. J Am Chem Soc, 2008, 130: 10482–10483

    Article  Google Scholar 

  132. Liu Y, Deng Y, Sun Z, et al. Hierarchical Cu2S microsponges constructed from nanosheets for efficient photocatalysis. Small, 2013, 9: 2702–2708

    Article  Google Scholar 

  133. Jiao S, Xu L, Jiang K, et al. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating. Adv Mater, 2006, 18: 1174–1177

    Article  Google Scholar 

  134. Akkerman QA, Genovese A, George C, et al. From binary Cu2S to ternary Cu–In–S and quaternary Cu–In–Zn–S nanocrystals with tunable composition via partial cation exchange. ACS Nano, 2015, 9: 521–531

    Article  Google Scholar 

  135. Mews A, Eychmueller A, Giersig M, et al. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J Phys Chem, 1994, 98: 934–941

    Article  Google Scholar 

  136. Wang X, Liu M, Zhou Z, et al. Toward facet engineering of CdS nanocrystals and their shape-dependent photocatalytic activities. J Phys Chem C, 2015, 119: 20555–20560

    Article  Google Scholar 

  137. Ma L, Liang S, Liu XL, et al. Synthesis of dumbbell-like gold-metal sulfide core-shell nanorods with largely enhanced transverse plasmon resonance in visible region and efficiently improved photocatalytic activity. Adv Funct Mater, 2015, 25: 898–904

    Article  Google Scholar 

  138. Dutta S, Ray C, Mallick S, et al. A gel-based approach to design hierarchical CuS decorated reduced graphene oxide nanosheets for enhanced peroxidase-like activity leading to colorimetric detection of dopamine. J Phys Chem C, 2015, 119: 23790–23800

    Article  Google Scholar 

  139. Zhao B, Shao G, Fan B, et al. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J Mater Chem A, 2015, 3: 10345–10352

    Article  Google Scholar 

  140. Deng C, Ge X, Hu H, et al. Template-free and green sonochemical synthesis of hierarchically structuredCuS hollowmicrospheres displaying excellent Fenton-like catalytic activities. CrystEngComm, 2014, 16: 2738–2745

    Article  Google Scholar 

  141. Huang WC, Lyu LM, Yang YC, et al. Synthesis of Cu2Onanocrystals fromcubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J Am Chem Soc, 2012, 134: 1261–1267

    Article  Google Scholar 

  142. Shang Y, Shao YM, Zhang DF, et al. Recrystallization-induced selfassembly for the growth of Cu2Osuperstructures. AngewChem Int Ed, 2014, 53: 11514–11518

    Article  Google Scholar 

  143. Hung LI, Tsung CK, HuangW, et al. Room-temperature formation of hollow Cu2O nanoparticles. Adv Mater, 2010, 22: 1910–1914

    Article  Google Scholar 

  144. Wu J, Ren Z, Du S, et al. A highly active oxygen evolution electrocatalyst: ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res, 2016, 9: 713–725

    Article  Google Scholar 

  145. Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev, 2012, 112: 4124–4155

    Article  Google Scholar 

  146. Xu ZP, Zhang J, Adebajo MO, et al. Catalytic applications of layered double hydroxides and derivatives. Appl Clay Sci, 2011, 53: 139–150

    Article  Google Scholar 

  147. Gong M, Dai H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res, 2015, 8: 23–39

    Article  Google Scholar 

  148. Wang H, Yan Y, Li B, et al. Hierarchical self-assembly of surfactantencapsulated and organically grafted polyoxometalate complexes. Chem Eur J, 2011, 17: 4273–4282

    Article  Google Scholar 

  149. Li JR, Sculley J, Zhou HC. Metal–organic frameworks for separations. Chem Rev, 2012, 112: 869–932

    Article  Google Scholar 

  150. Lu G, Li S, Guo Z, et al. Imparting functionality to ametal–organic framework material by controlled nanoparticle encapsulation. Nat Chem, 2012, 4: 310–316

    Article  Google Scholar 

  151. Yang J, Zhang F, Lu H, et al. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew Chem Int Ed, 2015, 54: 10889–10893

    Article  Google Scholar 

  152. Song YF, Tsunashima R. Recent advances on polyoxometalate-based molecular and composite materials. Chem Soc Rev, 2012, 41: 7384–7402

    Article  Google Scholar 

  153. Nyman M, Burns PC. A comprehensive comparison of transition-metal and actinyl polyoxometalates. Chem Soc Rev, 2012, 41: 7354–7367

    Article  Google Scholar 

  154. Proust A, Matt B, Villanneau R, et al. Functionalization and postfunctionalization: a step towards polyoxometalate-basedmaterials. Chem Soc Rev, 2012, 41: 7605–7622

    Article  Google Scholar 

  155. Banerjee A, Bassil BS, Röschenthaler GV, et al. Diphosphates and diphosphonates in polyoxometalate chemistry. Chem Soc Rev, 2012, 41: 7590–7604

    Article  Google Scholar 

  156. Wang Y, Weinstock IA. Polyoxometalate-decorated nanoparticles. Chem Soc Rev, 2012, 41: 7479–7496

    Article  Google Scholar 

  157. Miras HN, Yan J, Long DL, et al. Engineering polyoxometalates with emergent properties. Chem Soc Rev, 2012, 41: 7403–7430

    Article  Google Scholar 

  158. Yin P, Li D, Liu T. Solution behaviors and self-assembly of polyoxometalates as models of macroions and amphiphilic polyoxometalate–organic hybrids as novel surfactants. Chem Soc Rev, 2012, 41: 7368–7383

    Article  Google Scholar 

  159. Li H, Yang Y, Wang Y, et al. In situ fabrication of flower-like gold nanoparticles in surfactant-polyoxometalate-hybrid spherical assemblies. Chem Commun, 2010, 46: 3750–3752

    Article  Google Scholar 

  160. Pradeep CP, Li FY, Lydon C, et al. Design and synthesis of “dumbbell” and “triangular” inorganic-organic hybrid nanopolyoxometalate clusters and their characterisation through ESI-MS analyses. Chem Eur J, 2011, 17: 7472–7479

    Article  Google Scholar 

  161. Li Q, Wang E, Li S, et al. Template-free polyoxometalate-assisted synthesis for ZnO hollow spheres. J Solid State Chem, 2009, 182: 1149–1155

    Article  Google Scholar 

  162. Azumi MA, Ishihara T, Nishiguchi H, et al. Electrochemical intercalation of Li into heteropoly 12 molybdophosphoric acid ion-exchanged with Cs. Electrochemistry, 2002, 11: 869–874

    Google Scholar 

  163. He P, Xu B, Wang P, et al. A monolayer polyoxometalate superlattice. Adv Mater, 2014, 26: 4339–4344

    Article  Google Scholar 

  164. Lee JY, Farha OK, Roberts J, et al. Metal–organic framework materials as catalysts. Chem Soc Rev, 2009, 38: 1450–1459

    Article  Google Scholar 

  165. Schüth F, Sing KSW, Weitkamp J. Handbook of Porous Solids. Berlin: Wiley-VCH, 2002

    Book  Google Scholar 

  166. Davis ME. Ordered porous materials for emerging applications. Nature, 2002, 417: 813–821

    Article  Google Scholar 

  167. Zhou HC, Long JR, Yaghi OM. Introduction to metal–organic frameworks. Chem Rev, 2012, 112: 673–674

    Article  Google Scholar 

  168. Xu R, Pang W, Yu J, et al. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Berlin: John Wiley & Sons, 2009

    Google Scholar 

  169. Bansal RC, Goyal M. Activated Carbon Adsorption. Boca Raton: CRC press, 2005

    Book  Google Scholar 

  170. Perry IV JJ, Perman JA, Zaworotko MJ. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem Soc Rev, 2009, 38: 1400–1417

    Article  Google Scholar 

  171. Yaghi OM, O'Keeffe M, Ockwig NW, et al. Reticular synthesis and the design of new materials. Nature, 2003, 423: 705–714

    Article  Google Scholar 

  172. Li CP, Du M. Role of solvents in coordination supramolecular systems. Chem Commun, 2011, 47: 5958–5972

    Article  Google Scholar 

  173. Guillerm V, Kim D, Eubank JF, et al. A supermolecular building approach for the design and construction of metal–organic frameworks. Chem Soc Rev, 2014, 43: 6141–6172

    Article  Google Scholar 

  174. Moon HR, Lim DW, Suh MP. Fabrication ofmetal nanoparticles in metal–organic frameworks. Chem Soc Rev, 2013, 42: 1807–1824

    Article  Google Scholar 

  175. Zhu QL, Xu Q. Metal–organic framework composites. Chem Soc Rev, 2014, 43: 5468–5512

    Article  Google Scholar 

  176. Liu XJ, Cui CH, Yu SH, et al. Pt-Ni alloyed nanocrystals with controlled architectures for enhanced methanol oxidation. Chem Comm, 2013, 49: 8703–8706

    Google Scholar 

  177. Chen Z, Waje M, Li W, et al. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew Chem Int Ed, 2007, 46: 4060–4063

    Article  Google Scholar 

  178. Ponrouch A, Garbarino S, Guay D. Effect of the nanostructure on the CO poisoning rate of platinum. Electrochemistry Commun, 2009, 11: 834–837

    Article  Google Scholar 

  179. Colombi Ciacchi L, Pompe W, De Vita A. Growth of platinum clusters via addition of Pt(II) complexes: a first principles investigation. J Phys Chem B, 2003, 107: 1755–1764

    Article  Google Scholar 

  180. Xia BY, Wu HB, Li N, et al. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew Chem, 2015, 127: 3868–3872

    Article  Google Scholar 

  181. Zeng J, Lee J. Effects of preparation conditions on performance of carbon-supported nanosize Pt-Co catalysts for methanol electro-oxidation under acidic conditions. J Power Sources, 2005, 140: 268–273

    Article  Google Scholar 

  182. Teng X, Liang X, Maksimuk S, et al. Synthesis of porous platinum nanoparticles. Small, 2006, 2: 249–253

    Article  Google Scholar 

  183. Watt J, Cheong S, Toney MF, et al. Ultrafast growth of highly branched palladium nanostructures for catalysis. ACS Nano, 2010, 4: 396–402

    Article  Google Scholar 

  184. Chen YH, Hung HH, Huang MH. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts. J Am Chem Soc, 2009, 131: 9114–9121

    Article  Google Scholar 

  185. Hao E, Bailey RC, Schatz GC, et al. Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett, 2004, 4: 327–330

    Article  Google Scholar 

  186. Lim B, Jiang M, Tao J, et al. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater, 2009, 19: 189–200

    Article  Google Scholar 

  187. Nam KM, Shim JH, Ki H, et al. Single-crystalline hollow facecentered-cubic cobalt nanoparticles from solid face-centered-cubic cobalt oxide nanoparticles. Angew Chem Int Ed, 2008, 47: 9504–9508

    Article  Google Scholar 

  188. Wang Y, Camargo PHC, Skrabalak SE, et al. A facile, water-based synthesis of highly branched nanostructures of silver. Langmuir, 2008, 24: 12042–12046

    Article  Google Scholar 

  189. Wang X, Itoh H, Naka K, et al. Tetrathiafulvalene-assisted formation of silver dendritic nanostructures in acetonitrile. Langmuir, 2003, 19: 6242–6246

    Article  Google Scholar 

  190. Wen X, Xie YT, Mak WC, et al. Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications. Langmuir, 2006, 22: 4836–4842

    Article  Google Scholar 

  191. Hoefelmeyer JD, Niesz K, Somorjai GA, et al. Radial anisotropic growth of rhodium nanoparticles. Nano Lett, 2005, 5: 435–438

    Article  Google Scholar 

  192. Xiong Y, Chen J, Wiley B, et al. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett, 2005, 5: 1237–1242

    Article  Google Scholar 

  193. Lim B, Xiong Y, Xia Y. A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew Chem, 2007, 119: 9439–9442

    Article  Google Scholar 

  194. Jin M, Zhang H, Xie Z, et al. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ Sci, 2012, 5: 6352–6357

    Article  Google Scholar 

  195. Lu N, Chen W, Fang G, et al. 5-Fold twinned nanowires and single twinned right bipyramids of Pd: utilizing small organic molecules to tune the etching degree of O2/halides. Chem Mater, 2014, 26: 2453–2459

    Article  Google Scholar 

  196. Kimura F, Khalil G, Zettsu N, et al. Dual luminophore polystyrene microspheres for pressure-sensitive luminescent imaging. Meas Sci Technol, 2006, 17: 1254–1260

    Article  Google Scholar 

  197. Humphrey SM, Grass ME, Habas SE, et al. Rhodium nanoparticles from cluster seeds: control of size and shape by precursor addition rate. Nano Lett, 2007, 7: 785–790

    Article  Google Scholar 

  198. Peng Z, Yang H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res, 2009, 2: 406–415

    Article  Google Scholar 

  199. Mulvihill MJ, Ling XY, Henzie J, et al. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J Am Chem Soc, 2010, 132: 268–274

    Article  Google Scholar 

  200. Peng Z, Yang H. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J AmChem Soc, 2009, 131: 7542–7543

    Article  Google Scholar 

  201. Zheng H, Smith RK, Jun Y, et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science, 2009, 324: 1309–1312

    Article  Google Scholar 

  202. Zhang HT, Ding J, Chow GM. Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir, 2008, 24: 375–378

    Article  Google Scholar 

  203. Mazumdar D, Nagraj N, Kim HK, et al. Activity, folding and Z-DNA formation of the 8-17 DNAzyme in the presence of monovalent ions. J Am Chem Soc, 2009, 131: 5506–5515

    Article  Google Scholar 

  204. Lim B, Kobayashi H, Camargo PHC, et al. New insights into the growth mechanism and surface structure of palladium nanocrystals. Nano Res, 2010, 3: 180–188

    Article  Google Scholar 

  205. Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature, 2005, 437: 664–670

    Article  Google Scholar 

  206. Niu Z, Peng Q, Gong M, et al. Oleylamine-mediated shape evolution of palladium nanocrystals. Angew Chem, 2011, 123: 6439–6443

    Article  Google Scholar 

  207. De Santis CJ, Skrabalak SE. Core values: elucidating the role of seed structure in the synthesis of symmetrically branched nanocrystals. J Am Chem Soc, 2013, 135: 10–13

    Article  Google Scholar 

  208. Jin M, Liu H, Zhang H, et al. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res, 2011, 4: 83–91

    Article  Google Scholar 

  209. Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc, 2004, 126: 8648–8649

    Article  Google Scholar 

  210. Zhao H, Yang J, Wang L, et al. Fabrication of a palladium nanoparticle/graphene nanosheet hybrid via sacrifice of a copper template and its application in catalytic oxidation of formic acid. Chem Commun, 2011, 47: 2014–2016

    Article  Google Scholar 

  211. Zhong C, Liu J, Ni Z, et al. Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities. Sci China Mater, 2014, 57: 13–25

    Article  Google Scholar 

  212. Xu B, Yang H, Zhou G, et al. Strong metal-support interaction in size-controlled monodisperse palladium-hematite nano-heterostructures during a liquid-solid heterogeneous catalysis. Sci China Mater, 2014, 57: 34–41

    Article  Google Scholar 

  213. Wu J, Pan YT, Su D, et al. Ultrathin and stable AgAu alloy nanowires. Sci China Mater, 2015, 58: 595–602

    Article  Google Scholar 

  214. Guo S, Wang E. Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today, 2011, 6: 240–264

    Article  Google Scholar 

  215. Zhang L, Niu W, Xu G. Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today, 2012, 7: 586–605

    Article  Google Scholar 

  216. Yang CW, Chanda K, Lin PH, et al. Fabrication ofAu–Pd core–shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity. JAmChem Soc, 2011, 133: 19993–20000

    Article  Google Scholar 

  217. Wu HL, Kuo CH, Huang MH. Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir, 2010, 26: 12307–12313

    Article  Google Scholar 

  218. Yu Y, Zhang Q, Liu B, et al. Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. J Am Chem Soc, 2010, 132: 18258–18265

    Article  Google Scholar 

  219. Jin M, Zhang H, Xie Z, et al. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew Chem Int Ed, 2011, 50: 7850–7854

    Article  Google Scholar 

  220. Li J, Zheng Y, Zeng J, et al. Controlling the size and morphology of Au@Pd core-shell nanocrystals by manipulating the kinetics of seeded growth. Chem Eur J, 2012, 18: 8150–8156

    Article  Google Scholar 

  221. Sun Y. Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem Soc Rev, 2013, 42: 2497–2511

    Article  Google Scholar 

  222. Kramer RM, Li C, Naik RR. Engineered protein cages for nanomaterial synthesis. J Am Chem Soc, 2004, 126: 13282–13286

    Article  Google Scholar 

  223. Ling T, Wang JJ, Zhang H, et al. Freestanding ultrathin metallic nanosheets: materials, synthesis, and applications. Adv Mater, 2015, 27: 5396–5402

    Article  Google Scholar 

  224. Zhang H, Jin M, Wang J, et al. Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding different precursors. J Am Chem Soc, 2011, 133: 10422–10425

    Article  Google Scholar 

  225. Fan FR, Liu DY, Wu YF, et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc, 2008, 130: 6949–6951

    Article  Google Scholar 

  226. Bauer E, van der Merwe JH. Structure and growth of crystalline superlattices: from monolayer to superlattice. Phys Rev B, 1986, 33: 3657–3671

    Article  Google Scholar 

  227. Xie S, Peng HC, Lu N, et al. Confining the nucleation and overgrowth of Rh to the {111} facets of Pd nanocrystal seeds: the roles of capping agent and surface diffusion. J AmChem Soc, 2013, 135: 16658–16667

    Article  Google Scholar 

  228. Xia X, Figueroa-Cosme L, Tao J, et al. Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth. J Am Chem Soc, 2014, 136: 10878–10881

    Article  Google Scholar 

  229. Lee H, Habas SE, Somorjai GA, et al. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J Am Chem Soc, 2008, 130: 5406–5407

    Article  Google Scholar 

  230. Wu Y, Cai S, Wang D, et al. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt–Ni nanocrystals and their structure–activity study in model hydrogenation reactions. J Am Chem Soc, 2012, 134: 8975–8981

    Article  Google Scholar 

  231. Habas SE, Lee H, Radmilovic V, et al. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater, 2007, 6: 692–697

    Article  Google Scholar 

  232. Zhang J, Fang J. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J Am Chem Soc, 2009, 131: 18543–18547

    Article  Google Scholar 

  233. Wu J, Yang H. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res, 2011, 4: 72–82

    Article  Google Scholar 

  234. Huo Z, Tsung C, Huang W, et al. Sub-two nanometer single crystal Au nanowires. Nano Lett, 2008, 8: 2041–2044

    Article  Google Scholar 

  235. Jang K, Kim HJ, Son SU. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chem Mater, 2010, 22: 1273–1275

    Article  Google Scholar 

  236. Mu R, Fu Q, Xu H, et al. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation. J Am Chem Soc, 2011, 133: 1978–1986

    Article  Google Scholar 

  237. Wang C, Chi M, Li D, et al. Design and synthesis of bimetallic electrocatalyst withmultilayered Pt-skin surfaces. J AmChem Soc, 2011, 133: 14396–14403

    Article  Google Scholar 

  238. Chen C, Kang Y, Huo Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, 2014, 343: 1339–1343

    Article  Google Scholar 

  239. Yu W, Porosoff MD, Chen JG. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev, 2012, 112: 5780–5817

    Article  Google Scholar 

  240. Niu W, Zhang L, Xu G. Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano, 2010, 4: 1987–1996

    Article  Google Scholar 

  241. Wiley B, Herricks T, Sun Y, et al. Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett, 2004, 4: 1733–1739

    Article  Google Scholar 

  242. Seo D, Park JC, Song H. Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. J Am Chem Soc, 2006, 128: 14863–14870

    Article  Google Scholar 

  243. Chen Y, Gu X, Nie CG, et al. Shape controlled growth of gold nanoparticles by a solution synthesis. Chem Commun, 2005, 4181

  244. Chen J, Lim B, Lee EP, et al. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today, 2009, 4: 81–95

    Article  Google Scholar 

  245. Lim SI, Ojea-Jiménez I, Varon M, et al. Synthesis of platinum cubes, polypods, cuboctahedrons, and raspberries assisted by cobalt nanocrystals. Nano Lett, 2010, 10: 964–973

    Article  Google Scholar 

  246. Jin M, He G, Zhang H, et al. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew Chem Int Ed, 2011, 50: 10560–10564

    Article  Google Scholar 

  247. Zhang H, Li W, Jin M, et al. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. Nano Lett, 2011, 11: 898–903

    Article  Google Scholar 

  248. Dumestre F. Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]3. Science, 2004, 303: 821–823

    Article  Google Scholar 

  249. Seo D, Yoo CI, Chung IS, et al. Shape adjustment betweenmultiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra. J Phys Chem C, 2008, 112: 2469–2475

    Article  Google Scholar 

  250. Chen S, Wang ZL, Ballato J, et al. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J Am Chem Soc, 2003, 125: 16186–16187

    Article  Google Scholar 

  251. Lacroix LM, Gatel C, Arenal R, et al. Tuning complex shapes in platinum nanoparticles: from cubic dendrites to fivefold stars. Angew Chem, 2012, 124: 4768–4772

    Article  Google Scholar 

  252. Xiong Y, Cai H, Yin Y, et al. Synthesis and characterization of fivefold twinned nanorods and right bipyramids of palladium. Chem Phys Lett, 2007, 440: 273–278

    Article  Google Scholar 

  253. Wiley BJ, Xiong Y, Li ZY, et al. Right bipyramids of silver: a new shape derived from single twinned seeds. Nano Lett, 2006, 6: 765–768

    Article  Google Scholar 

  254. Gao Y, Jiang P, Song L, et al. Studies on silver nanodecahedrons synthesized by PVP-assisted N, N-dimethylformamide (DMF) reduction. J Cryst Growth, 2006, 289: 376–380

    Article  Google Scholar 

  255. Zhang W, Liu Y, Cao R, et al. Synergy between crystal strain and surface energy inmorphological evolution of five-fold-twinned silver crystals. J Am Chem Soc, 2008, 130: 15581–15588

    Article  Google Scholar 

  256. Pietrobon B, McEachran M, Kitaev V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACSNano, 2009, 3: 21–26

    Google Scholar 

  257. Skrabalak SE, Xia Y. Pushing nanocrystal synthesis toward nanomanufacturing. ACS Nano, 2009, 3: 10–15

    Article  Google Scholar 

  258. Choo H, He B, Liew KY, et al. Morphology and control of Pd nanoparticles. J Mol Catalysis A-Chem, 2006, 244: 217–228

    Article  Google Scholar 

  259. Yang Y, Matsubara S, Xiong L, et al. Solvothermal synthesis ofmultiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C, 2007, 111: 9095–9104

    Article  Google Scholar 

  260. Washio I, Xiong Y, Yin Y, et al. Reduction by the end groups of poly(vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. AdvMater, 2006, 18: 1745–1749

    Google Scholar 

  261. Chu HC, Kuo CH, Huang MH. Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg Chem, 2006, 45: 808–813

    Article  Google Scholar 

  262. Wang CY, Lu MY, Chen HC, et al. Single-crystalline Pb nanowires grown by galvanic displacement reactions of Pb ions on zinc foils and their superconducting properties. J Phys Chem C, 2007, 111: 6215–6219

    Article  Google Scholar 

  263. Li H, Liao S. Synthesis of flower-like Co microcrystals composed of Co nanoplates in water/ethanol mixed solvent. J Phys D-Appl Phys, 2008, 41: 065004

    Article  Google Scholar 

  264. Leng Y, Li Y, Li X, et al. Improvedmagnetic anisotropy ofmonodispersed triangular nickel nanoplates. J Phys Chem C, 2007, 111: 6630–6633

    Article  Google Scholar 

  265. Zhang J, Yang H, Fang J, et al. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett, 2010, 10: 638–644

    Article  Google Scholar 

  266. Wu J, Gross A, Yang H. Shape and composition-controlled platinum alloy nanocrystals using carbonmonoxide as reducing agent. Nano Lett, 2011, 11: 798–802

    Article  Google Scholar 

  267. Yin AX, Min XQ, Zhang YW, et al. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J Am Chem Soc, 2011, 133: 3816–3819

    Article  Google Scholar 

  268. Xu D, Liu Z, Yang H, et al. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angew Chem Int Ed, 2009, 48: 4217–4221

    Article  Google Scholar 

  269. Wu J, Qi L, You H, et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J Am Chem Soc, 2012, 134: 11880–11883

    Article  Google Scholar 

  270. Wang C, Hou Y, Kim J, et al. A general strategy for synthesizing FePt nanowires and nanorods. Angew Chem Int Ed, 2007, 46: 6333–6335

    Article  Google Scholar 

  271. Liu Q, Yan Z, Henderson NL, et al. Synthesis of CuPt nanorod catalysts with tunable lengths. J AmChem Soc, 2009, 131: 5720–5721

    Article  Google Scholar 

  272. Hong JW, Lee YW, Kim M, et al. One-pot synthesis and electrocatalytic activity of octapodal Au–Pd nanoparticles. Chem Commun, 2011, 47: 2553–2555

    Article  Google Scholar 

  273. Chou SW, Zhu CL, Neeleshwar S, et al. Controlled growth and magnetic property of FePt nanostructure: cuboctahedron, octapod, truncated cube, and cube. Chem Mater, 2009, 21: 4955–4961

    Article  Google Scholar 

  274. Wang L, Yamauchi Y. Controlled aqueous solution synthesis of platinum-palladium alloy nanodendrites with various compositions using amphiphilic triblock copolymers. Chem Asian J, 2010, 5: 2493–2498

    Article  Google Scholar 

  275. Lee YW, Kim M, Kim Y, et al. Synthesis and electrocatalytic activity of Au-Pd alloy nanodendrites for ethanol oxidation. J Phys Chem C, 2010, 114: 7689–7693

    Article  Google Scholar 

  276. Hong X, Wang D, Yu R, et al. Ultrathin Au–Ag bimetallic nanowires with Coulomb blockade effects. Chem Commun, 2011, 47: 5160–5162

    Article  Google Scholar 

  277. Peng Z, You H, Yang H. Composition-dependent formation of platinum silver nanowires. ACS Nano, 2010, 4: 1501–1510

    Article  Google Scholar 

  278. Zhang H, Jin M, Liu H, et al. Facile synthesis of Pd–Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano, 2011, 5: 8212–8222

    Article  Google Scholar 

  279. Yin AX, Min XQ, Zhu W, et al. Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity. Chem Eur J, 2012, 18: 777–782

    Article  Google Scholar 

  280. Phan DT, Uddin ASMI, Chung GS. A large detectable-range, high-response and fast-response resistivity hydrogen sensor based on Pt/Pd core–shell hybrid with graphene. Sensors Actuators B-Chem, 2015, 220: 962–967

    Article  Google Scholar 

  281. Wang F, Sun LD, FengW, et al. Heteroepitaxial growth of core-shell and core-multishell nanocrystals composed of palladium and gold. Small, 2010, 6: 2566–2575

    Article  Google Scholar 

  282. Bhattarai N, Prozorov T. In situ STEM investigation of shape-controlled synthesis of Au-Pd core-shell nanocubes. Microsc Microanal, 2015, 21: 951–952

    Article  Google Scholar 

  283. Jin M, Zhang H, Wang J, et al. Copper can still be epitaxially deposited on palladium nanocrystals to generate core–shell nanocubes despite their large lattice mismatch. ACS Nano, 2012, 6: 2566–2573

    Article  Google Scholar 

  284. Narula CK, Yang X, Li C, et al. A pathway for the growth of core–shell Pt–Pd nanoparticles. J Phys Chem C, 2015, 119: 25114–25121

    Article  Google Scholar 

  285. Zhang P, Hu Y, Li B, et al. Kinetically stabilized Pd@Pt core–shell octahedral nanoparticles with thin Pt layers for enhanced catalytic hydrogenation performance. ACS Catal, 2015, 5: 1335–1343

    Article  Google Scholar 

  286. Jiang M, Lim B, Tao J, et al. Epitaxial overgrowth of platinum on palladium nanocrystals. Nanoscale, 2010, 2: 2406–2411

    Article  Google Scholar 

  287. Kobayashi H, Lim B, Wang J, et al. Seed-mediated synthesis of Pd–Rh bimetallic nanodendrites. Chem Phys Lett, 2010, 494: 249–254

    Article  Google Scholar 

  288. Wang L, Yamauchi Y. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell. J Am Chem Soc, 2010, 132: 13636–13638

    Article  Google Scholar 

  289. Wang F, Li C, Sun LD, et al. Heteroepitaxial growth of high-indexfaceted palladium nanoshells and their catalytic performance. J Am Chem Soc, 2011, 133: 1106–1111

    Article  Google Scholar 

  290. Kim D, Lee YW, Lee SB, et al. Convex polyhedral Au@Pd core-shell nanocrystalswith high-index facets. Angew Chem Int Ed, 2012, 51: 159–163

    Article  Google Scholar 

  291. Park K, Vaia RA. Synthesis of complex Au/Ag nanorods by controlled overgrowth. Adv Mater, 2008, 20: 3882–3886

    Article  Google Scholar 

  292. Zhang H, Jin M, Wang J, et al. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J Am Chem Soc, 2011, 133: 6078–6089

    Article  Google Scholar 

  293. Wu J, Li P, Pan YTF, et al. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem Soc Rev, 2012, 41: 8066–8074

    Article  Google Scholar 

  294. Liu H, Nosheen F, Wang X. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chem Soc Rev, 2015, 44: 3056–3078

    Article  Google Scholar 

  295. Zhang H, Jin M, Xia Y. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev, 2012, 41: 8035–8049

    Article  Google Scholar 

  296. Wang D, Li Y. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater, 2011, 23: 1044–1060

    Article  Google Scholar 

  297. Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev, 2008, 108: 845–910

    Article  Google Scholar 

  298. Wei Z, Sun J, Li Y, et al. Bimetallic catalysts for hydrogen generation. Chem Soc Rev, 2012, 41: 7994–8008

    Article  Google Scholar 

  299. Sankar M, Dimitratos N, Miedziak PJ, et al. Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev, 2012, 41: 8099–8139

    Article  Google Scholar 

  300. Zheng YR, Gao MR, Li HH, et al. Carbon-supported PtCo2Ni2 alloy with enhanced activity and stability for oxygen reduction. Sci China Mater, 2015, 58: 179–185

    Article  Google Scholar 

  301. Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437: 121–124

    Article  Google Scholar 

  302. Li P, Peng Q, Li Y. Controlled synthesis and self-assembly of highly monodisperse Ag and Ag2S nanocrystals. Chem Eur J, 2011, 17: 941–946

    Article  Google Scholar 

  303. Zhao Z, Zhou Z, Bao J, et al. Octapod iron oxide nanoparticles as high-performance T2 contrast agents formagnetic resonance imaging. Nat Commun, 2013, 4: 2266

    Google Scholar 

  304. Feng Q, Wang W, Cheong WC, et al. Synthesis of palladium and palladium sulfide nanocrystals via thermolysis of a Pd–thiolate cluster. Sci China Mater, 2015, 58: 936–943

    Article  Google Scholar 

  305. Sun S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater, 2006, 18: 393–403

    Article  Google Scholar 

  306. Chen M, Liu JP, Sun S. One-step synthesis of FePt nanoparticles with tunable size. J Am Chem Soc, 2004, 126: 8394–8395

    Article  Google Scholar 

  307. Chen M, Kim J, Liu JP, et al. Synthesis of FePt nanocubes and their oriented self-assembly. J Am Chem Soc, 2006, 128: 7132–7133

    Article  Google Scholar 

  308. Robinson I, Zacchini S, Tung LD, et al. Synthesis and characterization of magnetic nanoalloys from bimetallic carbonyl clusters. Chem Mater, 2009, 21: 3021–3026

    Article  Google Scholar 

  309. Cumberland SL, Hanif KM, Javier A, et al. Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials. Chem Mater, 2002, 14: 1576–1584

    Article  Google Scholar 

  310. Larsen TH, Sigman M, Ghezelbash A, et al. Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolatederived precursor. J Am Chem Soc, 2003, 125: 5638–5639

    Article  Google Scholar 

  311. Sigman MB, Ghezelbash A, Hanrath T, et al. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. J Am Chem Soc, 2003, 125: 16050–16057

    Article  Google Scholar 

  312. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 1993, 115: 8706–8715

    Article  Google Scholar 

  313. Hines MA, Guyot-Sionnest P. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J Phys Chem B, 1998, 102: 3655–3657

    Article  Google Scholar 

  314. Norris DJ, Yao N, Charnock FT, et al. High-quality manganesedoped ZnSe nanocrystals. Nano Lett, 2001, 1: 3–7

    Article  Google Scholar 

  315. Li LS, Pradhan N, Wang Y, et al. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett, 2004, 4: 2261–2264

    Article  Google Scholar 

  316. Hines MA, Scholes GD. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater, 2003, 15: 1844–1849

    Article  Google Scholar 

  317. Lipovskii A, Kolobkova E, Petrikov V, et al. Synthesis and characterization of PbSe quantum dots in phosphate glass. Appl Phys Lett, 1997, 71: 3406–3408

    Article  Google Scholar 

  318. Pietryga JM, Schaller RD, Werder D, et al. Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J Am Chem Soc, 2004, 126: 11752–11753

    Article  Google Scholar 

  319. Urban JJ, Talapin DV, Shevchenko EV, et al. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. J Am Chem Soc, 2006, 128: 3248–3255

    Article  Google Scholar 

  320. Urban JJ, Talapin DV, Shevchenko EV, et al. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. NatMater, 2007, 6: 115–121

    Google Scholar 

  321. Zhuang Z, Lu X, Peng Q, et al. A facile “dispersion-decomposition” route to metal sulfide nanocrystals. Chem Eur J, 2011, 17: 10445–10452

    Article  Google Scholar 

  322. Koch CC. Top-down synthesis of nanostructured materials: mechanical and thermal processing methods. Rev Adv Mater Sci, 2003, 5: 91–99

    Google Scholar 

  323. Cobley CM, Xia Y. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater Sci Eng-R-Rep, 2010, 70: 44–62

    Article  Google Scholar 

  324. Fan HJ, Gösele U, Zacharias M. Formation of nanotubes and hollow nanoparticles based on kirkendall and diffusion processes: a review. Small, 2007, 3: 1660–1671

    Article  Google Scholar 

  325. Lou XWD, Archer LA, Yang Z. Hollow micro-/nanostructures: synthesis and applications. Adv Mater, 2008, 20: 3987–4019

    Article  Google Scholar 

  326. Sun Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298: 2176–2179

    Article  Google Scholar 

  327. Yin Y. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science, 2004, 304: 711–714

    Article  Google Scholar 

  328. Métraux GS, Cao YC, Jin R, et al. Triangular nanoframes made of gold and silver. Nano Lett, 2003, 3: 519–522

    Article  Google Scholar 

  329. Sun Y, Xia Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc, 2004, 126: 3892–3901

    Article  Google Scholar 

  330. Skrabalak SE, Chen J, Sun Y, et al. Gold nanocages: synthesis, properties, and applications. Acc Chem Res, 2008, 41: 1587–1595

    Article  Google Scholar 

  331. Macdonald JE, Bar Sadan M, Houben L, et al. Hybrid nanoscale inorganic cages. Nat Mater, 2010, 9: 810–815

    Article  Google Scholar 

  332. Peng Z, You H, Wu J, et al. Electrochemical synthesis and catalytic property of sub-10 nmplatinumcubic nanoboxes. Nano Lett, 2010, 10: 1492–1496

    Article  Google Scholar 

  333. Au L, Chen Y, Zhou F, et al. Synthesis and optical properties of cubic gold nanoframes. Nano Res, 2008, 1: 441–449

    Article  Google Scholar 

  334. Peng S, Sun S. Synthesis and characterization ofmonodisperse hollow Fe3O4 nanoparticles. Angew Chem, 2007, 119: 4233–4236

    Article  Google Scholar 

  335. Cabot A, Puntes VF, Shevchenko E, et al. Vacancy coalescence during oxidation of iron nanoparticles. J Am Chem Soc, 2007, 129: 10358–10360

    Article  Google Scholar 

  336. Cabot A, Iba´n~ez M, Guardia P, et al. Reaction regimes on the synthesis of hollow particles by the Kirkendall effect. J Am Chem Soc, 2009, 131: 11326–11328

    Article  Google Scholar 

  337. Chen J, Wiley B, McLellan J, et al. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett, 2005, 5: 2058–2062

    Article  Google Scholar 

  338. Wu X, Yu Y, Liu Y, et al. Synthesis of hollow CdxZn1-xSe nanoframes through the selective cation exchange of inorganic-organic hybrid ZnSe-amine nanoflakes with cadmium ions. Angew Chem, 2012, 124: 3265–3269

    Article  Google Scholar 

  339. Kottmann JP, Martin OJF, Smith DR, et al. Plasmon resonances of silver nanowires with a nonregular cross section. Phys Rev B, 2001, 64: 235402

    Article  Google Scholar 

  340. Moffatt WG. The Handbook of Binary Phase Diagrams. Amsterdam: Genium Pub Corp, 1976

    Google Scholar 

  341. Zhang Q, Cobley CM, Zeng J, et al. Dissolving Ag from Au-Ag alloy nanoboxes with H2O2: amethod for both tailoring the optical properties andmeasuring the H2O2 concentration. J Phys Chem C, 2010, 114: 6396–6400

    Article  Google Scholar 

  342. Popa A, Samia AC. Effect of metal precursor on the growth and electrochemical sensing properties of Pt-Ag nanoboxes. Chem Comm, 2014, 55: 7295–7298

    Article  Google Scholar 

  343. Chen J, Wiley B, Li ZY, et al. Gold nanocages: engineering their structure for biomedical applications. Adv Mater, 2005, 17: 2255–2261

    Article  Google Scholar 

  344. Gonzalez E, Arbiol J, Puntes VF. Carving at the nanoscale: sequential galvanic exchange and kirkendall growth at roomtemperature. Science, 2011, 334: 1377–1380

    Article  Google Scholar 

  345. Oh MH, Yu T, Yu SH, et al. Galvanic replacement reactions inmetal oxide nanocrystals. Science, 2013, 340: 964–968

    Article  Google Scholar 

  346. Wang ZL, Ahmad TS, El-Sayed MA. Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes. Surface Sci, 1997, 380: 302–310

    Article  Google Scholar 

  347. Hong X, Wang D, Cai S, et al. Single-crystalline octahedral Au–Ag nanoframes. J Am Chem Soc, 2012, 134: 18165–18168

    Article  Google Scholar 

  348. Fetisov VB, Kozhina GA, Ermakov AN, et al. Electrochemical dissolution of Mn3O4 in acid solutions. J Solid State Electrochem, 2007, 11: 1205–1210

    Article  Google Scholar 

  349. Villinski JE, O'Day PA, Corley TL, et al. In situ spectroscopic and solution analyses of the reductive dissolution of MnO2 by Fe(II). Environ Sci Technol, 2001, 35: 1157–1163

    Article  Google Scholar 

  350. Sun Y, Mayers B, Xia Y. Metal nanostructureswith hollowinteriors. Adv Mater, 2003, 15: 641–646

    Article  Google Scholar 

  351. Sun Y, Tao Z, Chen J, et al. Ag nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen. J Am Chem Soc, 2004, 126: 5940–5941

    Article  Google Scholar 

  352. Hu M, Petrova H, Chen J, et al. Ultrafast laser studies of the photothermal properties of gold nanocages. J Phys Chem B, 2006, 110: 1520–1524

    Article  Google Scholar 

  353. Wan DH, Xia XH, Xia YN, et al. Robust synthesis of gold cubic nanoframes through a combination of galvanic replacement, gold deposition, and silver dealloying. Small, 2013, 9: 3111–3117

    Article  Google Scholar 

  354. Cobley CM, Campbell DJ, Xia Y. Tailoring the optical and catalytic properties of gold-silver nanoboxes and nanocages by introducing palladium. Adv Mater, 2008, 20: 748–752

    Article  Google Scholar 

  355. Sun Y, Wiley B, Li ZY, et al. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J Am Chem Soc, 2004, 126: 9399–9406

    Article  Google Scholar 

  356. Tan Q, Wang P, Liu H, et al. Hollow MOx-RuO2 (M = Co, Cu, Fe, Ni, CuNi) nanostructures as highly efficient electrodes for supercapacitors. Sci China Mater, 2016, 59: 323–336

    Article  Google Scholar 

  357. Lieber CM, Hu J, Ouyang M, et al. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature, 1999, 399: 48–51

    Article  Google Scholar 

  358. Xiang J, LuW, Hu Y, et al. Ge/Si nanowire heterostructures as highperformance field-effect transistors. Nature, 2006, 441: 489–493

    Article  Google Scholar 

  359. Hsieh CH, Chou LJ, Lin GR, et al. Nanophotonic switch: gold-in-Ga2O3 peapod nanowires. Nano Lett, 2008, 8: 3081–3085

    Article  Google Scholar 

  360. Tao F, Grass ME, Zhang Y, et al. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science, 2008, 322: 932–934

    Article  Google Scholar 

  361. Elmalem E, Saunders AE, Costi R, et al. Growth of photocatalytic CdSe-Pt nanorods and nanonets. AdvMater, 2008, 20: 4312–4317

    Google Scholar 

  362. Teng X, Feygenson M, Wang Q, et al. Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nano Lett, 2009, 9: 3177–3184

    Article  Google Scholar 

  363. Wen CY, Reuter MC, Bruley J, et al. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science, 2009, 326: 1247–1250

    Article  Google Scholar 

  364. Oka K, Yanagida T, Nagashima K, et al. Resistive-switching memory effects of NiO nanowire/metal junctions. J Am Chem Soc, 2010, 132: 6634–6635

    Article  Google Scholar 

  365. Kim KW, Kim SM, Choi S, et al. Electroless Pt deposition on Mn3O4 nanoparticles via the galvanic replacement process: electrocatalytic nanocomposite with enhanced performance for oxygen reduction reaction. ACS Nano, 2012, 6: 5122–5129

    Article  Google Scholar 

  366. Xiong L, Li S, Zhang B, et al. Galvanic replacement-mediated synthesis of hollow Cu2O–Au nanocomposites and Au nanocages for catalytic and SERS applications. RSC Adv, 2015, 5: 76101–76106

    Article  Google Scholar 

  367. Smith DJ, Petford-long AK, Wallenberg LR, et al. Dynamic atomiclevel rearrangements in small gold particles. Science, 1986, 233: 872–875

    Article  Google Scholar 

  368. Wang Y, Xie S, Liu J, et al. Shape-controlled synthesis of palladium nanocrystals: a mechanistic understanding of the evolution from octahedrons to tetrahedrons. Nano Lett, 2013, 13: 2276–2281

    Article  Google Scholar 

  369. Xiong Y, Xia Y. Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv Mater, 2007, 19: 3385–3391

    Article  Google Scholar 

  370. Xiong Y, Chen J, Wiley B, et al. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J Am Chem Soc, 2005, 127: 7332–7333

    Article  Google Scholar 

  371. Cobley CM, Rycenga M, Zhou F, et al. Etching and growth: an intertwined pathway to silver nanocrystals with exotic shapes. Angew Chem Int Ed, 2009, 48: 4824–4827

    Article  Google Scholar 

  372. Guo X, Zhang Q, Sun Y, et al. Lateral etching of core–shell Au@metal nanorods to metal-tipped Au nanorods with improved catalytic activity. ACS Nano, 2012, 6: 1165–1175

    Article  Google Scholar 

  373. Huang CC, Hwu JR, Su WC, et al. Surfactant-assisted hollowing of Cu nanoparticles involving halide-induced corrosion–oxidation processes. Chem Eur J, 2006, 12: 3805–3810

    Article  Google Scholar 

  374. Kisner A, Heggen M, Fernández E, et al. The role of oxidative etching in the synthesis of ultrathin single-crystalline Au nanowires. Chem Eur J, 2011, 17: 9503–9507

    Article  Google Scholar 

  375. Xia X, Choi SI, Herron JA, et al. Facile synthesis of palladium right bipyramids and their use as seeds for overgrowth and as catalysts for formic acid oxidation. J Am Chem Soc, 2013, 135: 15706–15709

    Article  Google Scholar 

  376. Xie S, Lu N, Xie Z, et al. Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. Angew Chem Int Ed, 2012, 51: 10266–10270

    Article  Google Scholar 

  377. Thurmer K. Autocatalytic oxidation of lead crystallite surfaces. Science, 2002, 297: 2033–2035

    Article  Google Scholar 

  378. Ma L, Wang C, Gong M, et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano, 2012, 6: 9797–9806

    Article  Google Scholar 

  379. Im SH, Lee YT, Wiley B, et al. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed, 2005, 117: 2192–2195

    Article  Google Scholar 

  380. Wulff G. XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Zeitschrift für Kristallographie-Crystal Mater, 1901, 34: 449–530

    Google Scholar 

  381. Marks LD. Experimental studies of small particle structures. Rep Prog Phys, 1994, 57: 603–649

    Article  Google Scholar 

  382. Mettela G, Kulkarni GU. Facet selective etching of Au microcrystallites. Nano Res, 2015, 8: 2925–2934

    Article  Google Scholar 

  383. Wu Y, Wang D, Niu Z, et al. A strategy for designing a concave Pt-Ni alloy through controllable chemical etching. Angew Chem Int Ed, 2012, 51: 12524–12528

    Article  Google Scholar 

  384. Xiong Y, Wiley B, Chen J, et al. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew Chem Int Ed, 2005, 44: 7913–7917

    Article  Google Scholar 

  385. Lu X, Au L, McLellan J, et al. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett, 2007, 7: 1764–1769

    Article  Google Scholar 

  386. Li B, Long R, Zhong X, et al. Investigation of size-dependent plasmonic and catalytic properties of metallic nanocrystals enabled by size control with HCl oxidative etching. Small, 2012, 8: 1710–1716

    Article  Google Scholar 

  387. Wiley BJ, Chen Y, McLellan JM, et al. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett, 2007, 7: 1032–1036

    Article  Google Scholar 

  388. Teng X, Han WQ, Ku W, et al. Synthesis of ultrathin palladium and platinum nanowires and a study of their magnetic properties. Angew Chem, 2008, 120: 2085–2088

    Article  Google Scholar 

  389. Korte KE, Skrabalak SE, Xia Y. Rapid synthesis of silver nanowires through a CuCl-or CuCl2-mediated polyol process. J Mater Chem, 2008, 18: 437–441

    Article  Google Scholar 

  390. Miszta K, Dorfs D, Genovese A, et al. Cation exchange reactions in colloidal branched nanocrystals. ACS Nano, 2011, 5: 7176–7183

    Article  Google Scholar 

  391. Casavola M, van Huis MA, Bals S, et al. Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry. Chem Mater, 2012, 24: 294–302

    Article  Google Scholar 

  392. Son DH, Hughes SM, Yin YD, et al. Cation exchange rea ctions in ioni cnanocrys tals. Science, 2004, 306: 1009–1012

    Article  Google Scholar 

  393. Mocatta D, Cohen G, Schattner J, et al. Heavily doped semiconductor nanocrystal quantum dots. Science, 2011, 332: 77–81

    Article  Google Scholar 

  394. Chan EM, Marcus MA, Fakra S, et al. Millisecond kinetics of nanocrystal cation exchange using microfluidic X-ray absorption spectroscopy. J Phys Chem A, 2007, 111: 12210–12215

    Article  Google Scholar 

  395. Plendl JN, Gielisse PJ. Atomistic expression of hardness. Zeitschrift für Kristallographie, 1963, 118: 404–421

    Article  Google Scholar 

  396. Marcus Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans, 1991, 87: 2995–2999

    Article  Google Scholar 

  397. Wang F, Sun LD, Gu J, et al. Selective heteroepitaxial nanocrystal growth of rare earth fluorides on sodium chloride: synthesis and density functional calculations. Angew Chem Int Ed, 2012, 51: 8796–8799

    Article  Google Scholar 

  398. Kim S, Fisher B, Eisler HJ, et al. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J Am Chem Soc, 2003, 125: 11466–11467

    Article  Google Scholar 

  399. Peng X, Schlamp MC, Kadavanich AV, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc, 1997, 119: 7019–7029

    Article  Google Scholar 

  400. Sitt A, Sala FD, Menagen G, et al. Multiexciton engineering in seeded core/shell nanorods: transfer from type-I to quasi-type-II regimes. Nano Lett, 2009, 9: 3470–3476

    Article  Google Scholar 

  401. Talapin DV, Nelson JH, Shevchenko EV, et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett, 2007, 7: 2951–2959

    Article  Google Scholar 

  402. Lambert K, Geyter BD, Moreels I, et al. PbTe CdTe core shell particles by cation exchange, a HR-TEM study. Chem Mater, 2009, 21: 778–780

    Article  Google Scholar 

  403. Pietryga JM, Werder DJ, Williams DJ, et al. Utilizing the lability of lead selenide to produce heterostructured nanocrystalswith bright, stable infrared emission. J Am Chem Soc, 2008, 130: 4879–4885

    Article  Google Scholar 

  404. Miszta K, de Graaf J, Bertoni G, et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat Mater, 2011, 10: 872–876

    Article  Google Scholar 

  405. Sadtler B, Demchenko DO, Zheng H, et al. Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J Am Chem Soc, 2009, 131: 5285–5293

    Article  Google Scholar 

  406. Liu J, Zhao Y, Liu J, et al. From Cu2S nanocrystals to Cu doped CdS nanocrystals through cation exchange: controlled synthesis, optical properties and their p-type conductivity research. SciChina Mater, 2015, 58: 693–703

    Google Scholar 

  407. Luther JM, Zheng H, Sadtler B, et al. Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. J Am Chem Soc, 2009, 131: 16851–16857

    Article  Google Scholar 

  408. Park J, Kim SW. CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. J Mater Chem, 2011, 21: 3745

    Article  Google Scholar 

  409. Mao B, Chuang CH, Lu F, et al. Study of the partialAg-to-Zn cation exchange in AgInS2/ZnS nanocrystals. J Phys Chem C, 2013, 117: 648–656

    Article  Google Scholar 

  410. Zhang B, Jung Y, Chung HS, et al. Nanowire transformation by size-dependent cation exchange reactions. Nano Lett, 2010, 10: 149–155

    Article  Google Scholar 

  411. Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat Nanotech, 2008, 3: 538–542

    Article  Google Scholar 

  412. Novoselov KS. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  Google Scholar 

  413. Novoselov KS, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Scis, 2005, 102: 10451–10453

    Article  Google Scholar 

  414. Berger C. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312: 1191–1196

    Article  Google Scholar 

  415. Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108: 19912–19916

    Article  Google Scholar 

  416. Greinke RA, Reyolds III RA. Expandable graphite and method, United States Patent Application, 2002

    Google Scholar 

  417. Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotech, 2008, 3: 563–568

    Article  Google Scholar 

  418. Zeng Z, Yin Z, Huang X, et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed, 2011, 50: 11093–11097

    Article  Google Scholar 

  419. Coleman JN, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331: 568–571

    Article  Google Scholar 

  420. Eswaraiah V, Jyothirmayee Aravind SS, Ramaprabhu S. Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J Mater Chem, 2011, 21: 6800–6803

    Article  Google Scholar 

  421. Zeng Z, Sun T, Zhu J, et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew Chem Int Ed, 2012, 51: 9052–9056

    Article  Google Scholar 

  422. Adachi-Pagano M, Forano C, Besse JP. Delamination of layered double hydroxides by use of surfactants. Chem Commun, 2000, 91–92

    Google Scholar 

  423. O’Leary S, O’Hare D, Seeley G. Delamination of layered double hydroxides in polar monomers: new LDH-acrylate nanocompositesElectronic supplementary information (ESI) available: TEM image of Mg2Al(Cl) showing the layered structure. Chem Commun, 2002, 1506–1507

    Google Scholar 

  424. Jobbágy M, Regazzoni AE. Delamination and restacking of hybrid layered double hydroxides assessed by in situ XRD. J Colloid Interface Sci, 2004, 275: 345–348

    Article  Google Scholar 

  425. Ma R, Liu Z, Li L, et al. Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. J Mater Chem, 2006, 16: 3809–3813

    Article  Google Scholar 

  426. Liu Z, Ma R, Osada M, et al. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc, 2006, 128: 4872–4880

    Article  Google Scholar 

  427. Li L, Ma R, Ebina Y, et al. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem Mater, 2005, 17: 4386–4391

    Article  Google Scholar 

  428. Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygenreduction electrocatalysts using gold clusters. Science, 2007, 315: 220–222

    Article  Google Scholar 

  429. Li G, Kobayashi H, Taylor JM, et al. Hydrogen storage in Pd nanocrystals covered with a metal–organic framework. NatMater, 2014, 13: 802–806

    Google Scholar 

  430. Kuo CH, Tang Y, Chou LY, et al. Yolk–shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J Am Chem Soc, 2012, 134: 14345–14348

    Article  Google Scholar 

  431. Fu Q, Li WX, Yao Y, et al. Interface-confined ferrous centers for catalytic oxidation. Science, 2010, 328: 1141–1144

    Article  Google Scholar 

  432. Chen G, Xu C, Huang X, et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat Mater, 2016, 15: 564–569

    Article  Google Scholar 

  433. Kim F, Connor S, Song H, et al. Platonic gold nanocrystals. Angew Chem, 2004, 116: 3759–3763

    Article  Google Scholar 

  434. Li C, Fan F, Yin B, et al. Au+-cetyltrimethylammonium bromide solution: a novel precursor for seed-mediated growth of gold nanoparticles in aqueous solution. Nano Res, 2013, 6: 29–37

    Article  Google Scholar 

  435. Lim B, Jiang M, Yu T, et al. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res, 2010, 3: 69–80

    Article  Google Scholar 

  436. Johnson NJJ, van Veggel FCJM. Sodium lanthanide fluoride coreshell nanocrystals: a general perspective on epitaxial shell growth. Nano Res, 2013, 6: 547–561

    Article  Google Scholar 

  437. Zhao Y, de la Mata M, Qiu RLJ, et al. Te-seeded growth of fewquintuple layer Bi2Te3 nanoplates. Nano Res, 2014, 7: 1243–1253

    Article  Google Scholar 

  438. Hillerich K, Dick KA, Messing ME, et al. Simultaneous growth mechanisms for Cu-seeded InP nanowires. Nano Res, 2012, 5: 297–306

    Article  Google Scholar 

  439. Li C, Wei R, Xu Y, et al. Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth. Nano Res, 2014, 7: 536–543

    Article  Google Scholar 

  440. Gole A, Murphy CJ. seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater, 2004, 16: 3633–3640

    Article  Google Scholar 

  441. Yan H, Cheng H, Yi H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1, 3-butadiene. J Am Chem Soc, 2015, 137: 10484–10487

    Article  Google Scholar 

  442. Whitesides GM. Self-assembly at all scales. Science, 2002, 295: 2418–2421

    Article  Google Scholar 

  443. Bishop KJM, Wilmer CE, Soh S, et al. Nanoscale forces and their uses in self-assembly. Small, 2009, 5: 1600–1630

    Article  Google Scholar 

  444. Grzelczak M, Vermant J, Furst EM, et al. Directed self-assembly of nanoparticles. ACS Nano, 2010, 4: 3591–3605

    Article  Google Scholar 

  445. Min Y, Akbulut M, Kristiansen K, et al. The role of interparticle and external forces in nanoparticle assembly. Nat Mater, 2008, 7: 527–538

    Article  Google Scholar 

  446. Wu S, AngCY, Luo Z, et al. Byproduct-induced in-situ formation of gold colloidal superparticles. Sci China Mater, 2015, 58: 860–866

    Article  Google Scholar 

  447. Wang C, Siu C, Zhang J, et al. Understanding the forces acting in self-assembly and the implications for constructing three-dimensional (3D) supercrystals. Nano Res, 2015, 8: 2445–2466

    Article  Google Scholar 

  448. Ozin GA, Arsenault A, Cademartiri L. Nanochemistry: A Chemical Approach to Nanomaterials. London: RSC Publishing, 2009

    Google Scholar 

  449. Cademartiri L, Ozin GA. Concepts ofNanochemistry. Berlin: John Wiley & Sons, 2009

    Google Scholar 

  450. Murray CB, Kagan CR, Bawendi MG. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science, 1995, 270: 1335–1338

    Article  Google Scholar 

  451. Redl FX, Cho KS, Murray CB, et al. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature, 2003, 423: 968–971

    Article  Google Scholar 

  452. Shevchenko EV, Talapin DV, Kotov NA, et al. Structural diversity in binary nanoparticle superlattices. Nature, 2006, 439: 55–59

    Article  Google Scholar 

  453. Talapin DV, Shevchenko EV, Bodnarchuk MI, et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature, 2009, 461: 964–967

    Article  Google Scholar 

  454. Bai F, Wang D, Huo Z, et al. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew Chem Int Ed, 2007, 46: 6650–6653

    Article  Google Scholar 

  455. Wang P, Yu Q, Long Y, et al. Multivalent assembly of ultrasmall nanoparticles: one-, two-, and three-dimensional architectures of 2 nm gold nanoparticles. Nano Res, 2012, 5: 283–291

    Article  Google Scholar 

  456. Hong X, Tan C, Liu J, et al. AuAg nanosheets assembled from ultrathin AuAg nanowires. J Am Chem Soc, 2015, 137: 1444–1447

    Article  Google Scholar 

  457. Sun X, Zhu X, Zhang N, et al. Controlling and self assembling of monodisperse platinum nanocubes as efficientmethanol oxidation electrocatalysts. Chem Commun, 2015, 51: 3529–3532

    Article  Google Scholar 

  458. Zhang H, Wang D. Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion. Angew Chem, 2008, 120: 4048–4051

    Article  Google Scholar 

  459. Hu C, Lin K, Wang X, et al. Electrostatic self-assembling formation of Pd superlattice nanowires from surfactant-free ultrathin Pd nanosheets. J Am Chem Soc, 2014, 136: 12856–12859

    Article  Google Scholar 

  460. Fu G, Zhang Q, Wu J, et al. Arginine-mediated synthesis of cubelike platinum nanoassemblies as efficient electrocatalysts. Nano Res, 2015, 8: 3963–3971

    Article  Google Scholar 

  461. Tan C, Qi X, Liu Z, et al. Self-assembled chiral nanofibers from ultrathin low-dimensional nanomaterials. J Am Chem Soc, 2015, 137: 1565–1571

    Article  Google Scholar 

  462. Fu Q, Ran G, Xu W. Direct self-assembly of CTAB-capped Au nanotriangles. Nano Res, 2016

    Google Scholar 

  463. Zhang SY, Regulacio MD, Han MY. Self-assembly of colloidal onedimensional nanocrystals. Chem Soc Rev, 2014, 43: 2301–2323

    Article  Google Scholar 

  464. Wang T, Zhuang J, Lynch J, et al. Self-assembled colloidal superparticles from nanorods. Science, 2012, 338: 358–363

    Article  Google Scholar 

  465. Macfarlane RJ, Lee B, Jones MR, et al. Nanoparticle superlattice engineering with DNA. Science, 2011, 334: 204–208

    Article  Google Scholar 

  466. Biancaniello PL, Kim AJ, Crocker JC. Colloidal interactions and self-assembly using DNA hybridization. Phys Rev Lett, 2005, 94: 058302

    Article  Google Scholar 

  467. Nykypanchuk D, Maye MM, van der Lelie D, et al. DNA-guided crystallization of colloidal nanoparticles. Nature, 2008, 451: 549–552

    Article  Google Scholar 

  468. Park SY, Lytton-Jean AKR, Lee B, et al. DNA-programmable nanoparticle crystallization. Nature, 2008, 451: 553–556

    Article  Google Scholar 

  469. Leunissen ME, Christova CG, Hynninen AP, et al. Ionic colloidal crystals of oppositely charged particles. Nature, 2005, 437: 235–240

    Article  Google Scholar 

  470. Feng L, Dreyfus R, Sha R, et al. DNA patchy particles. Adv Mater, 2013, 25: 2779–2783

    Article  Google Scholar 

  471. Yan W, Xu L, Xu C, et al. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J Am Chem Soc, 2012, 134: 15114–15121

    Article  Google Scholar 

  472. Wang Y, Wang Y, Breed DR, et al. Colloidswith valence and specific directional bonding. Nature, 2012, 491: 51–55

    Article  Google Scholar 

  473. Chen Q, Whitmer JK, Jiang S, et al. Supracolloidal reaction kinetics of janus spheres. Science, 2011, 331: 199–202

    Article  Google Scholar 

  474. Nie Z, Fava D, Kumacheva E, et al. Self-assembly ofmetal–polymer analogues of amphiphilic triblock copolymers. Nat Mater, 2007, 6: 609–614

    Article  Google Scholar 

  475. Liu K, Nie Z, Zhao N, et al. Step-growth polymerization of inorganic nanoparticles. Science, 2010, 329: 197–200

    Article  Google Scholar 

  476. Cademartiri L, Bishop KJM. Programmable self-assembly. Nat Mater, 2014, 14: 2–9

    Article  Google Scholar 

  477. Quan Z, Fang J. Superlattices with non-spherical building blocks. Nano Today, 2010, 5: 390–411

    Article  Google Scholar 

  478. Li F, Josephson DP, Stein A. Colloidal assembly: the road fromparticles to colloidal molecules and crystals. Angew Chem Int Ed, 2011, 50: 360–388

    Article  Google Scholar 

  479. Ciszek JW, Huang L, Tsonchev S, et al. Assembly of nanorods into designer superstructures: the role of templating, capillary forces, adhesion, and polymer hydration. ACS Nano, 2010, 4: 259–266

    Article  Google Scholar 

  480. Stebe KJ, Lewandowski E, Ghosh M. Oriented assembly of metamaterials. Science, 2009, 325: 159–160

    Article  Google Scholar 

  481. Evers WH, Nijs BD, Filion L, et al. Entropy-driven formation of binary semiconductor-nanocrystal superlattices. Nano Lett, 2010, 10: 4235–4241

    Article  Google Scholar 

  482. Bodnarchuk MI, Kovalenko MV, Heiss W, et al. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J Am Chem Soc, 2010, 132: 11967–11977

    Article  Google Scholar 

  483. Blaak R, Mulder BM, Frenkel D. Cubatic phase for tetrapods. J Chem Phys, 2004, 120: 5486–5492

    Article  Google Scholar 

  484. Parviz BA, Ryan D, Whitesides GM. Using self-assembly for the fabrication of nano-scale electronic and photonic devices. IEEE Trans Adv Packag, 2003, 26: 233–241

    Article  Google Scholar 

  485. Pileni MP. Nanocrystal self-assemblies: fabrication and collective properties. J Phys Chem B, 2001, 105: 3358–3371

    Article  Google Scholar 

  486. Palmer LC, Stupp SI. Molecular self-assembly into one-dimensional nanostructures. Acc Chem Res, 2008, 41: 1674–1684

    Article  Google Scholar 

  487. Vos WL, Sprik R, van Blaaderen A, et al. Strong effects of photonic band structures on the diffraction of colloidal crystals. Phys Rev B, 1996, 53: 16231–16235

    Article  Google Scholar 

  488. Li J, Huang W, Wang Z, et al. A reversibly tunable colloidal photonic crystal via the infiltrated solvent liquid–solid phase transition. Colloid Surf A-Physicochem Eng Asp, 2007, 293: 130–134

    Article  Google Scholar 

  489. Shimoda Y, Ozaki M, Yoshino K. Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal. Appl Phys Lett, 2001, 79: 3627–3629

    Article  Google Scholar 

  490. Kim H, Ge J, Kim J, et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photon, 2009, 3: 534–540

    Article  Google Scholar 

  491. Jiao Y, Han D, Liu L, et al. Highly ordered mesoporous few-layer graphene frameworks enabled by Fe3O4 nanocrystal superlattices. Angew Chem, 2015, 127: 5819–5823

    Article  Google Scholar 

  492. Chen W, Yu R, Li L, et al. A seed-based diffusion route tomonodisperse intermetallic CuAu nanocrystals. Angew Chim, 2010, 122: 2979–2983

    Article  Google Scholar 

  493. Wang D, Li Y. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J Am Chem Soc, 2010, 132: 6280–6281

    Article  Google Scholar 

  494. Yu R, Chen W, Cheng ZY, et al. Multishell intermetallic onions by symmetrical configuration of ordered domains. Phys Rev Lett, 2010, 105: 225501

    Article  Google Scholar 

  495. Carenco S, Portehault D, Boissière C, et al. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem Rev, 2013, 113: 7981–8065

    Article  Google Scholar 

  496. Wang D, Li Y. Controllable synthesis of Cu-based nanocrystals in ODA solvent. Chem Commun, 2011, 47: 3604–3606

    Article  Google Scholar 

  497. Jia X, Zhao Y, Chen G, et al. Ni3FeN znanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst. Adv Energy Mater, 2016, 6: 1502585

    Article  Google Scholar 

  498. Bi W, Hu Z, Li X, et al. Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors. Nano Res, 2015, 8: 193–200

    Article  Google Scholar 

  499. Xu K, Chen P, Li X, et al. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J Am Chem Soc, 2015, 137: 4119–4125

    Article  Google Scholar 

  500. Lee BS, Yi M, Chu SY, et al. Copper nitride nanoparticles supported on a superparamagneticmesoporousmicrosphere for toxicfree click chemistry. Chem Commun, 2010, 46: 3935–3937

    Article  Google Scholar 

  501. Tian J, Liu Q, Asiri AM, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc, 2014, 136: 7587–7590

    Article  Google Scholar 

  502. Jiang K, Xu K, Zou S, et al. B-doped Pd catalyst: boosting roomtemperature hydrogen production from formic acid–formate solutions. J Am Chem Soc, 2014, 136: 4861–4864

    Article  Google Scholar 

  503. Popczun EJ, Read CG, Roske CW, et al. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem, 2014, 126: 5531–5534

    Article  Google Scholar 

  504. Niu Z, Wang D, Yu R, et al. Highly branched Pt–Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem Sci, 2012, 3: 1925

    Article  Google Scholar 

  505. Sun Y, Xia Y. Alloying and dealloying processes involved in the preparation ofmetal nanoshells through a galvanic replacement reaction. Nano Lett, 2003, 3: 1569–1572

    Article  Google Scholar 

  506. Wittstock A, Zielasek V, Biener J, et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science, 2010, 327: 319–322

    Article  Google Scholar 

  507. Cui C, Gan L, Heggen M, et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater, 2013, 12: 765–771

    Article  Google Scholar 

  508. Matanović I, Garzon FH, Henson NJ. Theoretical study of electrochemical processes on Pt–Ni alloys. J Phys Chem C, 2011, 115: 10640–10650

    Article  Google Scholar 

  509. Shui J, Chen C, Li JCM. Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction. Adv Funct Mater, 2011, 21: 3357–3362

    Article  Google Scholar 

  510. Wu Y, Wang D, Zhou G, et al. Sophisticated construction of Au islands on Pt–Ni: an ideal trimetallic nanoframe catalyst. J Am Chem Soc, 2014, 136: 11594–11597

    Article  Google Scholar 

  511. Blonder GE. Simple model for etching. Phys Rev B, 1986, 33: 6157–6168

    Article  Google Scholar 

  512. Ren F, Wang Z, Luo L, et al. Utilization of active Ni to fabricate Pt-Ni nanoframe/NiAl layered double hydroxide multifunctional catalyst through in situ precipitation. Chem Eur J, 2015, 21: 13181–13185

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (WK2060190043 and WK2060190053), and the National Natural Science Foundation of China (21521091, 21131004, 21390393, U1463202 and 21522107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Li  (李亚栋).

Additional information

Yuen Wu received his BSc and PhD degrees from the Department of Chemistry, Tsinghua University in 2009 and 2014, respectively. He is currently a professor in the Department of Chemistry, University of Science and Technology of China. His research interests are focused on the synthesis, assembly, characterization and application exploration of functional nanomaterials.

Dingsheng Wang received his BSc degree fromthe Department of Chemistry and Physics, University of Science and Technology of China in 2004, and his PhD degree from the Department of Chemistry, Tsinghua University in 2009, under the supervision of Prof. Yadong Li. He did his postdoctoral research at the Department of Physics, Tsinghua University, with Prof. Shoushan Fan. He joined the faculty of the Department of Chemistry, Tsinghua University in 2012.

Yadong Li received his BSc degree from the Department of Chemistry, Anhui Normal University in 1986 and his PhD degree from the Department of Chemistry, University of Science and Technology of China in 1998, under the supervision of Prof. Yitai Qian. He joined the faculty of the Department of Chemistry, Tsinghua University in 1999 as a full professor. His research interests are focused on the synthesis, assembly, structure and application exploration of nanomaterials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, D. & Li, Y. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 59, 938–996 (2016). https://doi.org/10.1007/s40843-016-5112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-5112-0

Keywords

Navigation