Skip to main content
Log in

Te-seeded growth of few-quintuple layer Bi2Te3 nanoplates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report on a Te-seeded epitaxial growth of ultrathin Bi2Te3 nanoplates (down to three quintuple layers (QL)) with large planar sizes (up to tens of micrometers) through vapor transport. Optical contrast has been systematically investigated for the as-grown Bi2Te3 nanoplates on the SiO2/Si substrates, experimentally and computationally. The high and distinct optical contrast provides a fast and convenient method for the thickness determination of few-QL Bi2Te3 nanoplates. By aberration-corrected scanning transmission electron microscopy, a hexagonal crystalline structure has been identified for the Te seeds, which form naturally during the growth process and initiate an epitaxial growth of the rhombohedralstructured Bi2Te3 nanoplates. The epitaxial relationship between Te and Bi2Te3 is identified to be perfect along both in-plane and out-of-plane directions of the layered nanoplate. Similar growth mechanism might be expected for other bismuth chalcogenide layered materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    Article  Google Scholar 

  2. Koski, K. J.; Cui, Y. The new skinny in two-dimensional nanomaterials. ACS Nano 2013, 7, 3739–3743.

    Article  Google Scholar 

  3. Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.

    Article  Google Scholar 

  4. Nolas, G. S.; Sharp, J.; Goldsmid, H. J. Thermoelectrics: Basic Principles and New Materials Developments; Springer: New York, 2001.

    Book  Google Scholar 

  5. Zhang, H. J.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  Google Scholar 

  6. Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.

    Article  Google Scholar 

  7. Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045.

    Article  Google Scholar 

  8. Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

    Article  Google Scholar 

  9. Moore, J. Topological insulators: The next generation. Nat. Phys. 2009, 5, 378–380.

    Article  Google Scholar 

  10. Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

    Article  Google Scholar 

  11. Liu, Y.; Bian, G.; Miller, T.; Bissen, M.; Chiang, T. C. Topological limit of ultrathin quasi-free-standing Bi2Te3 films grown on Si(111). Phys. Rev. B 2012, 85, 195442.

    Article  Google Scholar 

  12. Peng, H. L.; Lai, K. J.; Kong, D. S.; Meister, S.; Chen, Y. L.; Qi, X.-L.; Zhang, S.-C.; Shen, Z.-X.; Cui, Y. Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225–229.

    Google Scholar 

  13. Xiu, F. X.; He, L.; Wang, Y.; Cheng, L.; Chang, L.-T.; Lang, M.; Huang, G.; Kou, X. F.; Zhou, Y.; Jiang, X. W.; et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 2011, 6, 216–221.

    Article  Google Scholar 

  14. Kong, D. S.; Chen, Y. L.; Cha, J. J.; Zhang, Q. F.; Analytis, J. G.; Lai, K. J.; Liu, Z. K.; Hong, S. S.; Koski, K. J.; Mo, S.-K.; et al. Ambipolar field effect in the ternary topological insulator (BixSb1−x )2Te3 by composition tuning. Nat. Nanotechnol. 2011, 6, 705–709.

    Article  Google Scholar 

  15. Yuan, H. T.; Liu, H. W.; Shimotani, H.; Guo, H.; Chen, M. W.; Xue, Q. K.; Iwasa, Y. Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. Nano Lett. 2011, 11, 2601–2605.

    Article  Google Scholar 

  16. Wang, Z. H.; Qiu, R. L. J.; Lee, C. H.; Zhang, Z.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1−x Sex)3 nanoribbons. ACS Nano 2013, 7, 2126–2131.

    Article  Google Scholar 

  17. Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1425–1429.

    Article  Google Scholar 

  18. Soni, A.; Yanyuan, Z.; Ligen, Y.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Enhanced thermoelectric properties of solution grown Bi2Te3−xSex nanoplatelet composites. Nano Lett. 2012, 12, 1203–1209.

    Article  Google Scholar 

  19. Son, J. S.; Choi, M. K.; Han, M.-K.; Park, K.; Kim, J.-Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S.-J.; et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640–647.

    Article  Google Scholar 

  20. Soni, A.; Shen, Y.; Yin, M.; Zhao, Y.; Yu, L.; Hu, X.; Dong, Z. L.; Khor, K. A.; Dresselhaus, M. S.; Xiong, Q. H. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett. 2012, 12, 4305–4310.

    Article  Google Scholar 

  21. Scheele, M.; Oeschler, N.; Veremchuk, I.; Reinsberg, K.-G.; Kreuziger, A.-M.; Kornowski, A.; Broekaert, J.; Klinke, C.; Weller, H. ZT enhancement in solution-grown Sb(2−x)BixTe3 nanoplatelets. ACS Nano 2010, 4, 4283–4291.

    Article  Google Scholar 

  22. Wagner, V.; Dolling, G.; Powell, B. M.; Landweher, G. Lattice vibrations of Bi2Te3. Phys. Stat. Solidi B 1978, 85, 311–317.

    Article  Google Scholar 

  23. Hong, S. S.; Kundhikanjana, W.; Cha, J. J.; Lai, K.; Kong, D.; Meister, S.; Kelly, M. A.; Shen, Z.-X.; Cui, Y. Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett. 2010, 10, 3118–3122.

    Article  Google Scholar 

  24. Teweldebrhan, D.; Goyal, V.; Balandin, A. A. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett. 2010, 10, 1209–1218.

    Article  Google Scholar 

  25. Cheng, P.; Song, C. L.; Zhang, T.; Zhang, Y. Y.; Wang, Y. L.; Jia, J.-F.; Wang, J.; Wang, Y. Y.; Zhu, B.-F.; Chen, X.; et al. Landau quantization of topological surface states in Bi2Se3. Phys. Rev. Lett. 2010, 105, 076801.

    Article  Google Scholar 

  26. Kong, D. S.; Dang, W. H.; Cha, J. J.; Li, H.; Meister, S.; Peng, H. L.; Liu, Z. F.; Cui, Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010, 10, 2245–2250.

    Article  Google Scholar 

  27. Dang, W. H.; Peng, H. L.; Li, H.; Wang, P.; Liu, Z. F. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010, 10, 2870–2876.

    Article  Google Scholar 

  28. Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132–6135.

    Article  Google Scholar 

  29. Lee, C. H.; He, R.; Wang, Z. H.; Qiu, R. L. J.; Kumar, A.; Delaney, C.; Beck, B.; Kidd, T. E.; Chancey, C. C.; Sankaran, R. M.; et al. Metal-insulator transition in variably doped (Bi1−x Sbx)2Se3 nanosheets. Nanoscale 2013, 5, 4337–4343.

    Article  Google Scholar 

  30. Min, Y.; Moon, G. D.; Kim, B. S.; Lim, B.; Kim, J.-S.; Kang, C. Y.; Jeong, U. Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J. Am. Chem. Soc. 2012, 134, 2872–2875.

    Article  Google Scholar 

  31. Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z.-X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.

    Article  Google Scholar 

  32. Yan, Y.; Liao, Z.-M.; Zhou, Y.-B.; Wu, H.-C.; Bie, Y.-Q.; Chen, J.-J.; Meng, J.; Wu, X.-S.; Yu, D.-P. Synthesis and quantum transport properties of Bi2Se3 topological insulator nanostructures. Sci. Rep. 2013, 3, 1264.

    Google Scholar 

  33. Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.

    Article  Google Scholar 

  34. Zhao, Y. Y.; Chua, K. T. E.; Gan, C. K.; Zhang, J.; Peng, B.; Peng, Z. P.; Xiong, Q. H. Phonons in Bi2S3 nanostructures: Raman scattering and first-principles studies. Phys. Rev. B 2011, 84, 205330.

    Article  Google Scholar 

  35. Utama, M. I. B.; Peng, Z. P.; Chen, R.; Peng, B.; Xu, X. L.; Dong, Y.; Wong, L. M.; Wang, S. J.; Sun, H. D.; Xiong, Q. H. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: A demonstration of epitaxial growth strategy. Nano Lett. 2010, 11, 3051–3057.

    Article  Google Scholar 

  36. Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407–2414.

    Article  Google Scholar 

  37. Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S.; et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007–1015.

    Article  Google Scholar 

  38. Li, Z. G.; Qin, Y. Y.; Mu, Y. W.; Chen, T. S.; Xu, C. H.; He, L. B.; Ding, W. F.; Wan, J. G.; Song, F. Q.; Han, M. et al. Visualizing topological insulating Bi2Te3 quintuple layers on SiO2-capped Si substrates and its contrast optimization. J. Nanosci. Nanotechnol. 2011, 11, 7042–7046.

    Article  Google Scholar 

  39. Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007, 7, 3569–3575.

    Article  Google Scholar 

  40. Palik, E. D. Handbook of Optical Constants of Solids; Elsevier Science & Tech, 1985.

    Google Scholar 

  41. Greenaway, D. L.; Harbeke, G. Band structure of bismuth telluride, bismuth selenide and their respective alloys. J. Phys. Chem. Solids 1965, 26, 1585–1604.

    Article  Google Scholar 

  42. Aspnes, D. E.; Studna, A. A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 985–1009.

    Article  Google Scholar 

  43. Cheng, L. N.; Chen, Z.-G.; Yang, L.; Han, G.; Xu, H.-Y.; Snyder, G. J.; Lu, G.-Q.; Zou, J. T-shaped Bi2Te3-Te heteronanojunctions: Epitaxial growth, structural modeling, and thermoelectric properties. J. Phys. Chem. C 2013, 117, 12458–12464.

    Article  Google Scholar 

  44. Mineralogy Database (http://webmineral.com/) [Online].

  45. Wang, W. S.; Goebl, J.; He, L.; Aloni, S.; Hu, Y. X.; Zhen, L.; Yin, Y. D. Epitaxial growth of shape-controlled Bi2Te3-Te heterogeneous nanostructures. J. Am. Chem. Soc. 2010, 132, 17316–17324.

    Article  Google Scholar 

  46. Boncheva-Mladenova, Z.; Pashinkin, A. S.; Novoselova, A. V. Determination of the saturated vapor pressure of solid bismuth telluride. Inorg. Mater. Engl. Transl. 1968, 4, 241.

    Google Scholar 

  47. Gorbov, S. I.; Krestovnikov, A. N. Thermodynamic properties of the gaseous chalcogenides of group V elements. Russ. J. Phys. Chem. 1966, 40, 505–507.

    Google Scholar 

  48. Kashkooli, I. Y.; Munir, Z. A. The equilibrium and free surface sublimation pressures of oriented single crystals of bismuth telluride. J. Electrochem. Soc. 1970, 117, 248–250.

    Article  Google Scholar 

  49. Brebrick, R.; Smith, F. Partial and total vapor pressures over molten Bi2Te3. J. Electrochem. Soc. 1971, 118, 991–996.

    Article  Google Scholar 

  50. Elliott, R. P. Constitution of Binary Alloys, First Supplement; McGraw-Hill Company: New York, 1965.

    Google Scholar 

  51. Grillo, V.; Rossi, F. STEM_CELL: A software tool for electron microscopy. Part 2 analysis of crystalline materials. Ultramicroscopy 2013, 125, 112–129.

    Article  Google Scholar 

  52. Levi, A. C.; Kotrla, M. Theory and simulation of crystal growth. J. Phys.: Condens. Matt. 1997, 9, 299.

    Google Scholar 

  53. Medlin, D.; Ramasse, Q.; Spataru, C.; Yang, N. Structure of the (0001) basal twin boundary in Bi2Te3. J. Appl. Phys. 2010, 108, 043517.

    Article  Google Scholar 

  54. Medlin, D. L.; Yang, N. Y. C. Interfacial step structure at a (0001) basal twin in Bi2Te3. J. Electron. Mater. 2012, 41, 1456–1464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jordi Arbiol or Qihua Xiong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., de la Mata, M., Qiu, R.L.J. et al. Te-seeded growth of few-quintuple layer Bi2Te3 nanoplates. Nano Res. 7, 1243–1253 (2014). https://doi.org/10.1007/s12274-014-0487-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0487-y

Keywords

Navigation