Skip to main content
Log in

Simultaneous growth mechanisms for Cu-seeded InP nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report on epitaxial growth of InP nanowires (NWs) from Cu seed particles by metal-organic vapor phase epitaxy (MOVPE). Vertically-aligned straight nanowires can be achieved in a limited temperature range between 340 °C and 370 °C as reported earlier. In this paper we present the effect of the V/III ratio on nanowire morphology, growth rate, and particle configuration at a growth temperature of 350 °C. Two regimes can be observed in the investigated range of molar fractions. At high V/III ratios nanowires grow from a solid Cu2In particle. At low V/III ratios, nanowire growth from two particle types occurs simultaneously: Growth from solid Cu2In particles, and significantly faster growth from In-rich particles. We discuss a possible growth mechanism relying on a dynamic interplay between vapor-liquid-solid (VLS) and vapor-solid-solid (VSS) growth. Our results bring us one step closer to the replacement of Au as seed particle material as well as towards a deeper understanding of particle-assisted nanowire growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dick, K. A. A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III–V nanowires. Prog. Cryst. Growth Charact. Mater. 2008, 54, 138–173.

    Article  CAS  Google Scholar 

  2. Messing, M. E.; Hillerich, K.; Johansson, J.; Deppert, K.; Dick, K. A. The use of gold for fabrication of nanowire structures. Gold Bull. 2009, 42, 172–181.

    Article  CAS  Google Scholar 

  3. Wen, C. Y.; Reuter, M. C.; Bruley, J.; Tersoff, J.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 2009, 326, 1247–1250.

    Article  CAS  Google Scholar 

  4. Connell, J. G.; Al Balushi, Z. Y.; Sohn, K.; Huang, J. X.; Lauhon, L. J. Growth of Ge nanowires from Au-Cu alloy nanoparticle catalysts synthesized from aqueous solution. J. Phys. Chem. Lett. 2010, 1, 3360–3365.

    Article  CAS  Google Scholar 

  5. Mandl, B.; Stangl, J.; Hilner, E.; Zakharov, A. A.; Hillerich, K.; Dey, A. W.; Samuelson, L.; Bauer, G.; Deppert, K.; Mikkelsen, A. Growth mechanism of self-catalyzed group III–V nanowires. Nano Lett. 2010, 10, 4443–4449.

    Article  CAS  Google Scholar 

  6. Colombo, C.; Spirkoska, D.; Frimmer, M.; Abstreiter, G.; Fontcuberta i Morral, A. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 2008, 77, 155326.

    Article  Google Scholar 

  7. Woo, R. L.; Gao, L.; Goel, N.; Hudait, M. K.; Wang, K. L.; Kodambaka, S.; Hicks, R. F. Kinetic control of self-catalyzed indium phosphide nanowires, nanocones, and nanopillars. Nano Lett. 2009, 9, 2207–2211.

    Article  CAS  Google Scholar 

  8. Plissard, S.; Dick, K. A.; Wallart, X.; Caroff, P. Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon. Appl. Phys. Lett. 2010, 96, 121901.

    Article  Google Scholar 

  9. Morral, A. F. Gold-free GaAs nanowire synthesis and optical properties. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 819–828.

    Article  Google Scholar 

  10. Regolin, I.; Khorenko, V.; Prost, W.; Tegude, F. J.; Sudfeld, D.; Kastner, J.; Dumpich, G.; Hitzbleck, K.; Wiggers, H. GaAs whiskers grown by metal-organic vapor-phase epitaxy using Fe nanoparticles. J. Appl. Phys. 2007, 101, 054318.

    Article  Google Scholar 

  11. Martelli, F.; Rubini, S.; Piccin, M.; Bais, G.; Jabeen, F.; De Franceschi, S.; Grillo, V.; Carlino, E.; D’Acapito, F.; Boscherini, F., et al. Manganese-induced growth of GaAs nanowires. Nano Lett. 2006, 6, 2130–2134.

    Article  CAS  Google Scholar 

  12. Wang, G. T.; Talin, A. A.; Werder, D. J.; Creighton, J. R.; Lai, E.; Anderson, R. J.; Arslan, I. Highly aligned, templatefree growth and characterization of vertical GaN nanowires on sapphire by metal-organic chemical vapour deposition. Nanotechnology 2006, 17, 5773–5780.

    Article  CAS  Google Scholar 

  13. Boles, S. T.; Thompson, C. V.; Fitzgerald, E. A. Influence of indium and phosphine on Au-catalyzed InP nanowire growth on Si substrates. J. Cryst. Growth 2009, 311, 1446–1450.

    Article  CAS  Google Scholar 

  14. Heun, S.; Radha, B.; Ercolani, D.; Kulkarni, G. U.; Rossi, F.; Grillo, V.; Salviati, G.; Beltram, F.; Sorba, L. Pd-assisted growth of InAs nanowires. Cryst. Growth Des. 2010, 10, 4197–4202.

    Article  CAS  Google Scholar 

  15. Vogel, A. T.; de Boor, J.; Becker, M.; Wittemann, J. V.; Mensah, S. L.; Werner, P.; Schmidt, V. Ag-assisted CBE growth of ordered InSb nanowire arrays. Nanotechnology 2011, 22, 015605.

    Article  Google Scholar 

  16. Hillerich, K.; Messing, M. E.; Wallenberg, L. R.; Deppert, K.; Dick, K. A. Epitaxial InP nanowire growth from Cu seed particles. J. Cryst. Growth 2011, 315, 134–137.

    Article  CAS  Google Scholar 

  17. Hopkins, R. H.; Rohatgi, A. Impurity effects in silicon for high-efficiency solar-cells. J. Cryst. Growth 1986, 75, 67–79.

    Article  CAS  Google Scholar 

  18. Dubrovskii, V. G.; Sibirev, N. V. General form of the dependences of nanowire growth rate on the nanowire radius. J. Cryst. Growth 2007, 304, 504–513.

    Article  CAS  Google Scholar 

  19. Rodriguez, J. A.; Kim, J. Y.; Hanson, J. C.; Perez, M.; Frenkel, A. I. Reduction of CuO in H2: In situ time-resolved XRD studies. Catal. Lett. 2003, 85, 247–254.

    Article  CAS  Google Scholar 

  20. Kim, J. Y.; Rodriguez, J. A.; Hanson, J. C.; Frenkel, A. I.; Lee, P. L. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 2003, 125, 10684–10692.

    Article  CAS  Google Scholar 

  21. Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.

    Article  CAS  Google Scholar 

  22. Okamoto, H. Cu-In (copper-indium). J. Phase Equilib. Diffus. 2005, 26, 645.

    Google Scholar 

  23. Gamalski, A. D.; Tersoff, J.; Sharma, R.; Ducati, C.; Hofmann, S. Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. Nano Lett. 2010, 10, 2972–2976.

    Article  CAS  Google Scholar 

  24. Vogel, A. T.; de Boor, J.; Wittemann, J. V.; Mensah, S. L.; Werner, P.; Schmidt, V. Fabrication of high-quality InSb nanowire arrays by chemical beam epitaxy. Cryst. Growth Des. 2011, 11, 1896–1900.

    Article  CAS  Google Scholar 

  25. Mattila, M. Self-assembled indium phosphide nanowires. Dissertation for the degree of Doctor of Science in Technology, Helsinki University of Technology: Helsinki, 2007.

    Google Scholar 

  26. Novotny, C. J.; Yu, P. K. L. Vertically aligned, catalyst-free InP nanowires grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2005, 87, 203111.

    Article  Google Scholar 

  27. Ritter, D.; Heinecke, H. Evaluation of cracking efficiency of As and P precursors. J. Cryst. Growth 1997, 170, 149–154.

    Article  CAS  Google Scholar 

  28. Messing, M. E.; Hillerich, K.; Bolinsson, J.; Storm, K.; Johansson, J.; Dick, K. A.; Deppert, K. A comparative study of the effect of gold seed particle preparation method on nanowire growth. Nano Res. 2010, 3, 506–519.

    Article  CAS  Google Scholar 

  29. Heun, S.; Radha, B.; Ercolani, D.; Kulkarni, G. U.; Rossi, F.; Grillo, V.; Salviati, G.; Beltram, F.; Sorba, L. Coexistence of vapor-liquid-solid and vapor-solid-solid growth modes in Pd-assisted InAs nanowires. Small 2010, 6, 1935–1941.

    Article  CAS  Google Scholar 

  30. Wallentin, J.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K.; Borgström, M. T. Changes in contact angle of seed particle correlated with increased zinc blende formation in doped InP nanowires. Nano Lett. 2010, 10, 4807–4812.

    Article  CAS  Google Scholar 

  31. Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B. A massspectrometric study of the simultaneous reaction-mechanism of TMIn and PH3 to grow InP. J. Cryst. Growth 1988, 92, 605–615.

    Article  CAS  Google Scholar 

  32. Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B. Massspectrometric studies of phosphine pyrolysis and OMVPE growth of InP. J. Cryst. Growth 1987, 85, 148–153.

    Article  CAS  Google Scholar 

  33. Paiman, S.; Gao, Q.; Joyce, H. J.; Kim, Y.; Tan, H. H.; Jagadish, C.; Zhang, X.; Guo, Y.; Zou, J. Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires. J. Phys. D-Appl. Phys. 2010, 43, 445402.

    Article  Google Scholar 

  34. Mattila, M.; Hakkarainen, T.; Lipsanen, H. Catalyst-free fabrication of InP and InP(N) nanowires by metalorganic vapor phase epitaxy. J. Cryst. Growth 2007, 298, 640–643.

    Article  CAS  Google Scholar 

  35. Goncharova, L. V.; Clowes, S. K.; Fogg, R. R.; Ermakov, A. V.; Hinch, B. J. Phosphine adsorption and the production of phosphide phases on Cu(001). Surf. Sci. 2002, 515, 553–566.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karla Hillerich or Jonas Johansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillerich, K., Dick, K.A., Messing, M.E. et al. Simultaneous growth mechanisms for Cu-seeded InP nanowires. Nano Res. 5, 297–306 (2012). https://doi.org/10.1007/s12274-012-0210-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0210-9

Keywords

Navigation