Skip to main content
Log in

Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transition metal nitrides (TMNs) are of particular interest by virtue of their synergic advantages of superior electrical conductivity, excellent environmental durability and high reaction selectivity, yet it is difficult to achieve flexible design and operation. Herein, mesocrystal nanosheets (MCNSs) of vanadium nitride (VN) are synthesized via a confined-growth route from thermally stable layered vanadium bronze, representing the first two-dimensional (2D) metallic mesocrystal in inorganic compounds. Benefiting from their single-crystalline-like long-range electronic connectivity, VN MCNSs deliver an electrical conductivity of 1.44 × 105 S/m at room temperature, among the highest values observed for 2D nanosheets. Coupled with their unique pseudocapacitance, VN MCNS-based flexible supercapacitors afford a superior volumetric capacitance of 1,937 mF/cm3. Nitride MCNSs should have wide applications in the energy storage and conversion fields because their intrinsic high conductivity is coupled with the reactivity of inorganic lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

    Article  Google Scholar 

  2. Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. 25th anniversary article: Hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 2014, 26, 2185–2204.

    Article  Google Scholar 

  3. Yin, Z. Y.; Zhu, J. X.; He, Q. Y.; Cao, X. H.; Tan, C. L.; Chen, H. Y.; Yan, Q. Y.; Zhang, H. Graphene-based materials for solar cell applications. Adv. Energy Mater. 2014, 4, 1300574.

    Google Scholar 

  4. Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

    Article  Google Scholar 

  5. Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.

    Article  Google Scholar 

  6. Lin, C. W.; Zhu, X. J.; Feng, J.; Wu, C. Z.; Hu, S. L.; Peng, J.; Guo, Y. Q.; Peng, L. L.; Zhao, J. Y.; Huang, J. L. et al. Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 2013, 135, 5144–5151.

    Article  Google Scholar 

  7. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  8. Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954.

    Article  Google Scholar 

  9. Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317.

    Article  Google Scholar 

  10. Papaconstantopoulos, D. A.; Pickett, W. E.; Klein, B. M.; Boyer, L. L. Electronic properties of transition-metal nitrides: The group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN. Phys. Rev. B 1985, 31, 752–761.

    Article  Google Scholar 

  11. Chhowalla, M.; Unalan, H. E. Thin films of hard cubic Zr3N4 stabilized by stress. Nat. Mater. 2005, 4, 317–322.

    Article  Google Scholar 

  12. Yamanaka, S.; Hotehama, K. I.; Kawaji, H. Superconductivity at 25.5 K in electron-doped layered hafnium nitride. Nature 1998, 392, 580–582.

    Article  Google Scholar 

  13. Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192.

    Article  Google Scholar 

  14. Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 2012, 51, 6131–6135.

    Article  Google Scholar 

  15. Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.

    Article  Google Scholar 

  16. Yang, M. H.; DiSalvo, F. J. Template-free synthesis of mesoporous transition metal nitride materials from ternary cadmium transition metal oxides. Chem. Mater. 2012, 24, 4406–4409.

    Article  Google Scholar 

  17. Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794–803.

    Article  Google Scholar 

  18. Bi, W. T.; Zhou, M.; Ma, Z. Y.; Zhang, H. Y.; Yu, J. B.; Xie, Y. CuInSe2 ultrathin nanoplatelets: Novel self-sacrificial template-directed synthesis and application for flexible photodetectors. Chem. Commun. 2012, 48, 9162–9164.

    Article  Google Scholar 

  19. Lu, X. H.; Yu, M. H.; Zhai, T.; Wang, G. M.; Xie, S. L.; Liu, T. Y.; Liang, C. L.; Tong, Y. X.; Li, Y. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 2013, 13, 2628–2633.

    Article  Google Scholar 

  20. Bao, J.; Zhang, X. D.; Bai, L. F.; Bai, W. C.; Zhou, M.; Xie, J. F.; Guan, M. L.; Zhou, J. F.; Xie, Y. All-solid-state flexible thin-film supercapacitors with high electrochemical performance based on a two-dimensional V2O5·H2O/graphene composite. J. Mater. Chem. A 2014, 2, 10876–10881.

    Article  Google Scholar 

  21. Xie, T.; Gong, M.; Niu, Z. Q.; Li, S.; Yan, X. Y.; Li, Y. D. Shape-controlled CuCl crystallite catalysts for aniline coupling. Nano Res. 2010, 3, 174–179.

    Article  Google Scholar 

  22. Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.

    Article  Google Scholar 

  23. Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of co catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749.

    Article  Google Scholar 

  24. Crossland, E. J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Alexander-Webber, J. A.; Snaith, H. J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 2013, 495, 215–219.

    Article  Google Scholar 

  25. Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47–54.

    Article  Google Scholar 

  26. Bian, Z. F.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 2014, 136, 458–465.

    Article  Google Scholar 

  27. Cölfen, H.; Antonietti, M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 2005, 44, 5576–5591.

    Article  Google Scholar 

  28. Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

    Article  Google Scholar 

  29. Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: New York, 2005.

    Book  Google Scholar 

  30. Choi, D.; Blomgren, G. E.; Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 2006, 18, 1178–1182.

    Article  Google Scholar 

  31. Hanumantha, P. J.; Datta, M. K.; Kadakia, K. S.; Hong, D. H.; Chung, S. J.; Tam, M. C.; Poston, J. A.; Manivannan, A.; Kumta, P. N. A simple low temperature synthesis of nanostructured vanadium nitride for supercapacitor applications. J. Electrochem. Soc. 2013, 160, A2195–A2206.

    Article  Google Scholar 

  32. Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323.

    Article  Google Scholar 

  33. Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzheng Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, W., Hu, Z., Li, X. et al. Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors. Nano Res. 8, 193–200 (2015). https://doi.org/10.1007/s12274-014-0612-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0612-y

Keywords

Navigation