Skip to main content
Log in

Integrated Use of In Vitro and In Vivo Information for Comprehensive Prediction of Drug Interactions Due to Inhibition of Multiple CYP Isoenzymes

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Mechanistic static pharmacokinetic (MSPK) models are simple, have fewer data requirements, and have broader applicability; however, they cannot use in vitro information and cannot distinguish the contributions of multiple cytochrome P450 (CYP) isoenzymes and the hepatic and intestinal first-pass effects appropriately. We aimed to establish a new MSPK analysis framework for the comprehensive prediction of drug interactions (DIs) to overcome these disadvantages.

Methods

Drug interactions that occurred by inhibiting CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A in the liver and CYP3A in the intestine were simultaneously analyzed for 59 substrates and 35 inhibitors. As in vivo information, the observed changes in the area under the concentration-time curve (AUC) and elimination half-life (t1/2), hepatic availability, and urinary excretion ratio were used. As in vitro information, the fraction metabolized (fm) and the inhibition constant (Ki) were used. The contribution ratio (CR) and inhibition ratio (IR) for multiple clearance pathways and hypothetical volume (VHyp) were inferred using the Markov Chain Monte Carlo (MCMC) method.

Result

Using in vivo information from 239 combinations and in vitro 172 fm and 344 Ki values, changes in AUC, and t1/2 were estimated for all 2065 combinations, wherein the AUC was estimated to be more than doubled for 602 combinations. Intake-dependent selective intestinal CYP3A inhibition by grapefruit juice has been suggested. By separating the intestinal contributions, DIs after intravenous dosing were also appropriately inferred.

Conclusion

This framework would be a powerful tool for the reasonable management of various DIs based on all available in vitro and in vivo information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers

  2. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions

  3. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions

  4. https://www.ema.europa.eu/en/investigation-drug-interactions#current-effective-version---under-revision-section

  5. Guideline on drug interaction for drug development and appropriate provision of information. https://www.pmda.go.jp/files/000228122.pdf

  6. Sugano K. Lost in modelling and simulation? ADMET DMPK. 2021;9(2):75–109.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Min JS, Bae SK. Prediction of drug-drug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res. 2017;40(12):1356–79.

    Article  CAS  PubMed  Google Scholar 

  8. Li R, Barton HA, Yates PD, Ghosh A, Wolford AC, Riccardi KA, Maurer TS. A “middle-out” approach to human pharmacokinetic predictions for OATP substrates using physiologically-based pharmacokinetic modeling. J Pharmacokinet Pharmacodyn. 2014;41(3):197–209.

    Article  CAS  PubMed  Google Scholar 

  9. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the “bottom up” and “top down” approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  10. Yoshida K, Guo C, Sane R. Quantitative prediction of OATP-mediated drug–drug interactions with model-based analysis of endogenous biomarker kinetics. CPT Pharmacomet Syst Pharmacol. 2018;7(8):517–24.

    Article  CAS  Google Scholar 

  11. Yoshikado T, Toshimoto K, Maeda K, Kusuhara H, Kimoto E, Rodrigues AD, Chiba K, Sugiyama Y. PBPK modeling of coproporphyrin I as an endogenous biomarker for drug interactions involving inhibition of hepatic OATP1B1 and OATP1B3. CPT Pharmacomet Syst Pharmacol. 2018;7(11):739–47.

    Article  CAS  Google Scholar 

  12. Yoshida K, Maeda K, Konagaya A, Kusuhara H. Accurate estimation of in vivo inhibition constants of inhibitors and fraction metabolized of substrates with physiologically based pharmacokinetic drug–drug interaction models incorporating parent drugs and metabolites of substrates with cluster newton method. Drug Metab Dispos. 2018;46(11):1805–16.

    Article  CAS  PubMed  Google Scholar 

  13. Schlender JF, Teutonico D, Coboeken K, Schnizler K, Eissing T, Willmann S, Jaehde U, Stass H. A physiologically-based pharmacokinetic model to describe ciprofloxacin pharmacokinetics over the entire span of life. Clin Pharmacokinet. 2018;57(12):1613–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ke AB, Rostami-Hodjegan A, Zhao P, Unadkat JD. Pharmacometrics in pregnancy: an unmet need. Annu Rev Pharmacol Toxicol. 2014;54:53–69.

    Article  CAS  PubMed  Google Scholar 

  15. Feng S, Shi J, Parrott N, Hu P, Weber C, Martin-Facklam M, Saito T, Peck R. Combining “bottom-up” and “top-down” methods to assess ethnic difference in clearance: bitopertin as an example. Clin Pharmacokinet. 2016;55(7):823–32.

    Article  CAS  PubMed  Google Scholar 

  16. Doki K, Neuhoff S, Rostami-Hodjegan A, Homma M. Assessing potential drug-drug interactions between dabigatran etexilate and a P-glycoprotein inhibitor in renal impairment populations using physiologically based pharmacokinetic modeling. CPT Pharmacomet Syst Pharmacol. 2019;8(2):118–26.

    Article  CAS  Google Scholar 

  17. Tylutki Z, Polak S, Wiśniowska B. Top-down, bottom-up and middle-out strategies for drug cardiac safety assessment via modeling and simulations. Curr Pharmacol Rep. 2016;2(4):171–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46(8):681–96.

    Article  CAS  PubMed  Google Scholar 

  19. Ohno Y, Hisaka A, Ueno M, Suzuki H. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47(10):669–80.

    Article  CAS  PubMed  Google Scholar 

  20. Gabriel L, Tod M, Goutelle S. Quantitative prediction of drug interactions caused by CYP1A2 inhibitors and inducers. Clin Pharmacokinet. 2016;55(8):977–90.

    Article  CAS  PubMed  Google Scholar 

  21. Di Paolo V, Ferrari FM, Poggesi I, Quintieri L. Quantitative prediction of drug interactions caused by cytochrome P450 2B6 inhibition or induction. Clin Pharmacokinet. 2022;61(9):1297–306.

    Article  PubMed  Google Scholar 

  22. Tod M, Bourguignon L, Bleyzac N, Goutelle S. Quantitative prediction of interactions mediated by transporters and cytochromes: application to organic anion transporting polypeptides, breast cancer resistance protein and cytochrome 2C8. Clin Pharmacokinet. 2020;59(6):757–70.

    Article  CAS  PubMed  Google Scholar 

  23. Castellan AC, Tod M, Gueyffier F, Audars M, Cambriels F, Kassaï B, Nony P, Genophar Working Group. Quantitative prediction of the impact of drug interactions and genetic polymorphisms on cytochrome P450 2C9 substrate exposure. Clin Pharmacokinet. 2013;52(3):199–209.

    Article  CAS  PubMed  Google Scholar 

  24. Goutelle S, Bourguignon L, Bleyzac N, Berry J, Clavel-Grabit F, Tod M. In vivo quantitative prediction of the effect of gene polymorphisms and drug interactions on drug exposure for CYP2C19 substrates. AAPS J. 2013;15(2):415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tod M, Goutelle S, Clavel-Grabit F, Nicolas G, Charpiat B. Quantitative prediction of cytochrome P450 (CYP) 2D6-mediated drug interactions. Clin Pharmacokinet. 2011;50(8):519–30.

    Article  CAS  PubMed  Google Scholar 

  26. Tod M, Goutelle S, Bleyzac N, Bourguignon L. A generic model for quantitative prediction of interactions mediated by efflux transporters and cytochromes: application to P-glycoprotein and cytochrome 3A4. Clin Pharmacokinet. 2019;58(4):503–23.

    Article  CAS  PubMed  Google Scholar 

  27. Hisaka A, Kusama M, Ohno Y, Sugiyama Y, Suzuki H. A proposal for a pharmacokinetic interaction significance classification system (PISCS) based on predicted drug exposure changes and its potential application to alert classifications in product labelling. Clin Pharmacokinet. 2009;48(10):653–66.

    Article  CAS  PubMed  Google Scholar 

  28. Tod M, Nkoud-Mongo C, Gueyffier F. Impact of genetic polymorphism on drug–drug interactions mediated by cytochromes: a general approach. AAPS J. 2013;15(4):1242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hisaka A, Nakamura M, Tsukihashi A, Koh S, Suzuki H. Assessment of intestinal availability (FG) of substrate drugs of cytochrome p450s by analyzing changes in pharmacokinetic properties caused by drug-drug interactions. Drug Metab Dispos. 2014;42(10):1640–5.

    Article  PubMed  Google Scholar 

  30. Dokoumetzidis A, Aarons L. Analytical expressions for combining population pharmacokinetic parameters from different studies. J Biopharm Stat. 2008;18(4):662–76.

    Article  PubMed  Google Scholar 

  31. Langdon G, Gueorguieva I, Aarons L, Karlsson M. Linking preclinical and clinical whole-body physiologically based pharmacokinetic models with prior distributions in NONMEM. Eur J Clin Pharmacol. 2007;63(5):485–98.

    Article  CAS  PubMed  Google Scholar 

  32. Shibata Y, Tamemoto Y, Singh SP, Yoshitomo A, Hozuki S, Sato H, Hisaka A. Plausible drug interaction between cyclophosphamide and voriconazole via inhibition of CYP2B6. Drug Metab Pharmacokinet. 2021;39: 100396.

    Article  CAS  PubMed  Google Scholar 

  33. Njuguna NM, Umehara KI, Huth F, Schiller H, Chibale K, Camenisch G. Improvement of the chemical inhibition phenotyping assay by cross-reactivity correction. Drug Metab Pers Ther. 2016;31(4):221–8.

    CAS  PubMed  Google Scholar 

  34. Hisaka A, Ohno Y, Yamamoto T, Suzuki H. Theoretical considerations on quantitative prediction of drug–drug interactions. Drug Metab Pharmacokinet. 2010;25(1):48–61.

    Article  CAS  PubMed  Google Scholar 

  35. Hisaka A, Ohno Y, Yamamoto T, Suzuki H. Prediction of pharmacokinetic drug–drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther. 2010;125(2):230–48.

    Article  CAS  PubMed  Google Scholar 

  36. Maeda K, Hisaka A, Ito K, Ohno Y, Ishiguro A, Sato R, Nagai N. Classification of drugs for evaluating drug interaction in drug development and clinical management. Drug Metab Pharmacokinet. 2021;41: 100414.

    Article  CAS  PubMed  Google Scholar 

  37. Kato M, Chiba K, Hisaka A, Ishigami M, Kayama M, Mizuno N, Nagata Y, Takakuwa S, Tsukamoto Y, Ueda K, Kusuhara H, Ito K, Sugiyama Y. The intestinal first-pass metabolism of substrates of CYP3A4 and P-glycoprotein-quantitative analysis based on information from the literature. Drug Metab Pharmacokinet. 2003;18(6):365–72.

    Article  CAS  PubMed  Google Scholar 

  38. Clark JS, Gelfand AE. Hierarchical modelling for the environmental sciences. Oxford: Oxford University Press; 2006.

    Google Scholar 

  39. Spiegelhalter D, Thomas A, Best N, Lunn D. WinBUGS user manual. Cambridge: MRC Biostatistics Unit; 2003.

    Google Scholar 

  40. Sturtz S, Ligges U, Gelman A. R2WinBUGS: a package for running WinBUGS from R. J Stat Soft. 2005;12:1–16.

    Article  Google Scholar 

  41. R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  42. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. 2nd ed. London: Chapman and Hall/CRC; 2004.

    Google Scholar 

  43. Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF, Sellers EM. Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos. 2002;30(3):314–8.

    Article  CAS  PubMed  Google Scholar 

  44. Niwa T, Shiraga T, Takagi A. Drug–drug interaction of antifungal drugs. Yakugaku Zasshi. 2005;125(10):795–805 (Japanese).

    Article  CAS  PubMed  Google Scholar 

  45. Brown HS, Galetin A, Hallifax D, Houston JB. Prediction of in vivo drug–drug interactions from in vitro data: factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin Pharmacokinet. 2006;45(10):1035–50.

    Article  CAS  PubMed  Google Scholar 

  46. Tamemoto Y, Shibata Y, Hashimoto N, Sato H, Hisaka A. Involvement of multiple cytochrome P450 isoenzymes in drug interactions between ritonavir and direct oral anticoagulants. Drug Metab Pharmacokinet. (In press).

  47. International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Article  Google Scholar 

  48. Yoshikado T, Yoshida K, Kotani N, Nakada T, Asaumi R, Toshimoto K, Maeda K, Kusuhara H, Sugiyama Y. Quantitative analyses of hepatic OATP-mediated interactions between statins and inhibitors using PBPK modeling with a parameter optimization method. Clin Pharmacol Ther. 2016;100(5):513–23.

    Article  CAS  PubMed  Google Scholar 

  49. Hanke N, Gómez-Mantilla JD, Ishiguro N, Stopfer P, Nock V. Physiologically based pharmacokinetic modeling of rosuvastatin to predict transporter-mediated drug–drug interactions. Pharm Res. 2021;38(10):1645–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoshitomo A, Asano S, Hozuki S, Tamemoto Y, Shibata Y, Hashimoto N, Takahashi K, Sasaki Y, Ozawa N, Kageyama M, Iijima T, Kazuki Y, Sato H, Hisaka A. Significance of basal membrane permeability of epithelial cells in predicting intestinal drug absorption. Drug Metab Dispos. 2023;51(3):318–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Hisaka.

Ethics declarations

Funding

This study was partly supported by AMED under Grant Numbers JP18be0304203, JP19be0304203, JP20be0304203, and JP21be0304203 and supported by the Chiba University SEEDS Fund.

Conflict of interest

The authors have no conflicts of interests.

Availability of data and material

Data necessary for the analysis are attached in the Supplementary Material.

Code availability

Program code necessary for the analysis is attached in the Supplementary Material.

Authors’ contributions

S. Hozuki, H. Sato, and A. Hisaka designed this study. S. Hozuki, S. Asano, M. Nakamura, S. Koh, and A. Hisaka performed this study. S. Hozuki, S. Asano, M. Nakamura, and S. Koh, H. Yoshioka, collected and analyzed the data. S. Hozuki and Y. Shibata and Y. Tamemoto performed the experiment. S. Hozuki, S. Asano, H. Sato and A. Hisaka wrote the manuscript. All authors read and approved the final manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hozuki, S., Yoshioka, H., Asano, S. et al. Integrated Use of In Vitro and In Vivo Information for Comprehensive Prediction of Drug Interactions Due to Inhibition of Multiple CYP Isoenzymes. Clin Pharmacokinet 62, 849–860 (2023). https://doi.org/10.1007/s40262-023-01234-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01234-6

Navigation