Skip to main content

Advertisement

Log in

Reliability and Extension of Quantitative Prediction of CYP3A4-Mediated Drug Interactions Based on Clinical Data

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

An approach was proposed in 2007 for quantitative predictions of cytochrome P450 (CYP)3A4-mediated drug-drug interactions. It is based on two characteristic parameters: the contribution ratio (CR; i.e., the fraction of victim drug clearance by CYP) and the inhibition ratio (IR) of the inhibitor. Knowledge of these parameters allows forecasting of the ratio between the area under the plasma concentration-time curve (AUC) of the victim drug when given with the inhibitor and the AUC of the victim drug when it is given alone. So far, these parameters were established for 21 substrates and 17 inhibitors. The goals of our study were to test the assumption of substrate independence of the potency of inhibitors in vivo and to estimate the CR and IR for an extended list of substrates and inhibitors of CYP3A4. The assumption of independence of IRs from the substrate was evaluated on a set of eight victim drugs and eight inhibitors. Forty-four AUC ratios were available. This assumption was rejected in four cases, but it did not result in more than a twofold error in AUC ratio predictions. The extended list of substrates and inhibitors was defined by a thorough literature search. Fifty-nine AUC ratios were available for the global analysis. Final estimates of CRs and IRs were obtained for 37 substrates and 25 inhibitors, respectively. The mean prediction error of the ratios was 0.02, while the mean absolute prediction error was 0.58. Predictive distributions for 917 possible interactions were obtained, giving detailed information on some drugs or inhibitors that have been poorly studied so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Zhou S-F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008;9(4):310–22.

    Article  PubMed  CAS  Google Scholar 

  2. Examples of sensitive in vivo CYP substrates and CYP substrates with narrow therapeutic range (7/28/2011) [Internet]. Available from http://www.fda.gov/drugs/developmentapprovalprocess/developmentresources/druginteractionslabeling/ucm093664.htm#classSub. Accessed 29 Jul 2014

  3. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet. 2000;38(1):41–57.

    Article  PubMed  CAS  Google Scholar 

  4. Zhou S-F, Xue CC, Yu X-Q, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29(6):687–710.

    Article  PubMed  CAS  Google Scholar 

  5. Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46(8):681–96.

    Article  PubMed  CAS  Google Scholar 

  6. Ohno Y, Hisaka A, Ueno M, Suzuki H. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47(10):669–80.

    Article  PubMed  CAS  Google Scholar 

  7. Tod M, Goutelle S, Clavel-Grabit F, Nicolas G, Charpiat B. Quantitative prediction of cytochrome P450 (CYP) 2D6-mediated drug interactions. Clin Pharmacokinet. 2011;50(8):519–30.

    Article  PubMed  CAS  Google Scholar 

  8. Castellan A-C, Tod M, Gueyffier F, Audars M, Cambriels F, Kassaï B, et al. Quantitative prediction of the impact of drug interactions and genetic polymorphisms on cytochrome P450 2C9 substrate exposure. Clin Pharmacokinet. 2013;52(3):199–209.

    Article  PubMed  CAS  Google Scholar 

  9. Goutelle S, Bourguignon L, Bleyzac N, Berry J, Clavel-Grabit F, Tod M. In vivo quantitative prediction of the effect of gene polymorphisms and drug interactions on drug exposure for CYP2C19 substrates. AAPS J. 2013;15(2):415–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Tod M, Nkoud-Mongo C, Gueyffier F. Impact of genetic polymorphism on drug-drug interactions mediated by cytochromes: a general approach. AAPS J. 2013;15(4):1242–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Kenworthy KE, Bloomer JC, Clarke SE, Houston JB. CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol. 1999;48(5):716–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Kenworthy KE, Clarke SE, Andrews J, Houston JB. Multisite kinetic models for CYP3A4: simultaneous activation and inhibition of diazepam and testosterone metabolism. Drug Metab Dispos Biol Fate Chem. 2001;29(12):1644–51.

    PubMed  CAS  Google Scholar 

  13. Galetin A, Clarke SE, Houston JB. Multisite kinetic analysis of interactions between prototypical CYP3A4 subgroup substrates: midazolam, testosterone, and nifedipine. Drug Metab Dispos Biol Fate Chem. 2003;31(9):1108–16.

    Article  PubMed  CAS  Google Scholar 

  14. Foti RS, Rock DA, Wienkers LC, Wahlstrom JL. Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dispos. 2010;38(6):981–7.

    Article  PubMed  CAS  Google Scholar 

  15. Congdon PP. Bayesian statistical modelling. John Wiley & Sons; 2007. 598 p.

  16. Ntzoufras I. Bayesian modeling using WinBUGS. John Wiley & Sons; 2011. 422 p.

  17. Guest EJ, Rowland-Yeo K, Rostami-Hodjegan A, Tucker GT, Houston JB, Galetin A. Assessment of algorithms for predicting drug-drug interactions via inhibition mechanisms: comparison of dynamic and static models. Br J Clin Pharmacol. 2011;71(1):72–87.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Lefèvre G, Carpenter P, Souppart C, Schmidli H, McClean M, Stypinski D. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether-lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br J Clin Pharmacol. 2002;54(5):485–92.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bailey DG, Malcolm J, Arnold O, David SJ. Grapefruit juice-drug interactions. Br J Clin Pharmacol. 1998;46(2):101–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Obach RS, Walsky RL, Venkatakrishnan K, Gaman EA, Houston JB, Tremaine LM. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions. J Pharmacol Exp Ther. 2006;316(1):336–48.

    Article  PubMed  CAS  Google Scholar 

  21. Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of HIV protease inhibitors 1: inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir. Drug Metab Dispos Biol Fate Chem. 2011;39(6):1070–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Kirby BJ, Collier AC, Kharasch ED, Dixit V, Desai P, Whittington D, et al. Complex drug interactions of HIV protease inhibitors 2: in vivo induction and in vitro to in vivo correlation of induction of cytochrome P450 1A2, 2B6, and 2C9 by ritonavir or nelfinavir. Drug Metab Dispos Biol Fate Chem. 2011;39(12):2329–37.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Liu P, Foster G, Gandelman K, LaBadie RR, Allison MJ, Gutierrez MJ, et al. Steady-state pharmacokinetic and safety profiles of voriconazole and ritonavir in healthy male subjects. Antimicrob Agents Chemother. 2007;51(10):3617–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Imazio M, Brucato A, Trinchero R, Spodick D, Adler Y. Colchicine for pericarditis: hype or hope? Eur Heart J. 2009;30(5):532–9.

    Article  PubMed  CAS  Google Scholar 

  25. Kasserra C, Hughes E, Treitel M, et al. Clinical pharmacology of boceprevir: metabolism, excretion, and drug-drug interactions [abstract 118 ]. 18th Conference on Retroviruses and Opportunistic Infections Boston, USA; 2011.

  26. Clarithromycine-Oct2010.pdf [Internet]. [cited 2013 May 17]. Available from: http://db.cbg-meb.nl/veegactie/csp/Clarithromycine-Oct2010.pdf

  27. Invirase, INN-saquinavir mesilate-WC500035084.pdf [Internet]. Available from: http://www.emea.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000113/WC500035084.pdf. Accessed 17 May 2013

  28. Terkeltaub RA, Furst DE, Digiacinto JL, Kook KA, Davis MW. Novel evidence-based colchicine dose-reduction algorithm to predict and prevent colchicine toxicity in the presence of cytochrome P450 3A4/P-glycoprotein inhibitors. Arthritis Rheum. 2011;63(8):2226–37.

    Article  PubMed  CAS  Google Scholar 

  29. Multaq, INN-dronedarone-WC500044534.pdf [Internet]. Available from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001043/WC500044534.pdf. Accessed 17 May 2013

  30. Ragueneau-Majlessi I, Boulenc X, Rauch C, Hachad H, Levy RH. Quantitative correlations among CYP3A sensitive substrates and inhibitors: literature analysis. Curr Drug Metab. 2007;8(8):810–4.

    Article  PubMed  CAS  Google Scholar 

  31. Incivo, INN-telaprevir-WC500115529.pdf [Internet]. Available from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002313/WC500115529.pdf. Accessed 17 May 2013

  32. Varis T, Backman JT, Kivistö KT, Neuvonen PJ. Diltiazem and mibefradil increase the plasma concentrations and greatly enhance the adrenal-suppressant effect of oral methylprednisolone. Clin Pharmacol Ther. 2000;67(3):215–21.

    Article  PubMed  CAS  Google Scholar 

  33. Laganière S, Davies RF, Carignan G, Foris K, Goernert L, Carrier K, et al. Pharmacokinetic and pharmacodynamic interactions between diltiazem and quinidine. Clin Pharmacol Ther. 1996;60(3):255–64.

    Article  PubMed  Google Scholar 

  34. Edurant, INN-rilpivirine-WC500118874.pdf [Internet]. Available from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002264/WC500118874.pdf. Accessed 10 Jul 2013

  35. Xarelto, INN-rivaroxaban-WC500057108.pdf [Internet]. Available from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000944/WC500057108.pdf. Accessed 29 May 2013

  36. Muirhead GJ, Faulkner S, Harness JA, Taubel J. The effects of steady-state erythromycin and azithromycin on the pharmacokinetics of sildenafil in healthy volunteers. Br J Clin Pharmacol. 2002;53 Suppl 1:37S–43S.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Rapamune, INN-sirolimus-WC500046437.pdf [Internet]. Available from http://www.emea.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000273/WC500046437.pdf. Accessed 17 May 2013

  38. CIALIS, INN-Tadalafil-WC500026318.pdf [Internet]. Available from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000436/WC500026318.pdf. Accessed 17 May 2013

  39. Brilique,INN-ticagrelor-WC500100494.pdf [Internet]. Available from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001241/WC500100494.pdf. Accessed 17 May 2013

  40. Victrelis, INN-boceprevir-WC500109786.pdf [Internet]. Available from http://www.ema.europa.eu/docs/fr_FR/document_library/EPAR_-_Product_Information/human/002332/WC500109786.pdf. Accessed 17 May 2013

  41. Krishna G, Ma L, Prasad P, Moton A, Martinho M, O’Mara E. Effect of posaconazole on the pharmacokinetics of simvastatin and midazolam in healthy volunteers. Expert Opin Drug Metab Toxicol. 2012;8(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  42. Norvir, INN-ritonavir-WC500028728.pdf [Internet]. Available from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000127/WC500028728.pdf. Accessed 29 May 2013

  43. Merck & Co Inc. Victrelis prescribing information [Internet]. 2012. Available from http://www.hep-druginteractions.org. Accessed 10 Jul 2013

  44. Wilby KJ, Greanya ED, Ford J-AE, Yoshida EM, Partovi N. A review of drug interactions with boceprevir and telaprevir: implications for HIV and transplant patients. Ann Hepatol. 2012;11(2):179–85.

    PubMed  CAS  Google Scholar 

  45. CROI 2011 Paper #118 [Internet]. Available from http://www.retroconference.org/2011/Abstracts/41140.htm. Accessed 29 May 2013

  46. Lebrun-Vignes B, Archer VC, Diquet B, Levron JC, Chosidow O, Puech AJ, et al. Effect of itraconazole on the pharmacokinetics of prednisolone and methylprednisolone and cortisol secretion in healthy subjects. Br J Clin Pharmacol. 2001;51(5):443–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Glynn AM, Slaughter RL, Brass C, D’Ambrosio R, Jusko WJ. Effects of ketoconazole on methylprednisolone pharmacokinetics and cortisol secretion. Clin Pharmacol Ther. 1986;39(6):654–9.

    Article  PubMed  CAS  Google Scholar 

  48. Damkier P, Hansen LL, Brøsen K. Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine. Br J Clin Pharmacol. 1999;48(6):829–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Edwards DJ, Lavoie R, Beckman H, Blevins R, Rubenfire M. The effect of coadministration of verapamil on the pharmacokinetics and metabolism of quinidine. Clin Pharmacol Ther. 1987;41(1):68–73.

    Article  PubMed  CAS  Google Scholar 

  50. Noxafil, INN-posaconazole-WC500037784.pdf [Internet]. Available from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000610/WC500037784.pdf. Accessed 10 Jul 2013

Download references

Conflict of Interest

No sources of funding were used to conduct this study or prepare this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Tod.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

(DOC 457 kb)

APPENDIX

APPENDIX

The orthogonal regression was based on the following approach (7):

  • CRs and IRs are the initial values found in the step 1 of the analysis.

  • X’s and Y’s are the logit-transformed initial values.

  • CRTs and IRTs are the “observed” logit-transformed initial values.

  • CRZs and IRZs are the refined estimates.

  • ~N (μ, τ) means “distributed as normal distribution, with a mean of μ and variance of 1/τ.

  • ~G (r,μ) means “distributed as gamma distribution, with a mean of r/μ and variance of r/μ 2.”

  • i and j are the indexes of the substrate and the inhibitor, respectively.

  • Preds are the predicted AUC ratios for each (CR and IR) couple.

  • AUC ratios are the observed values, if any, for each (CR and IR) couple.

For each j:

$$ \begin{array}{l}{Y}_j = \mathrm{Log}\ \left[{\mathrm{IR}}_j/\left(1-{\mathrm{IR}}_j\right)\right]\hfill \\ {}{\mathrm{IR}\mathrm{T}}_j\sim N\left({Y}_j,\ {\tau}_{\mathrm{IR}}\right)\hfill \\ {}{\mathrm{IR}\mathrm{Z}}_j=\left[ \exp \left({\mathrm{IR}\mathrm{T}}_j\right)\right]/\left[1+ \exp \left({\mathrm{IR}\mathrm{T}}_j\right)\right]\hfill \end{array} $$

For each i:

$$ \begin{array}{l}{X}_j=\mathrm{Log}\ \left[{\mathrm{CR}}_i/\left(1-{\mathrm{CR}}_i\right)\right]\hfill \\ {}{\mathrm{CR}\mathrm{T}}_i \sim N\left({X}_j,\ {\tau}_{\mathrm{CR}}\right)\hfill \\ {}{\mathrm{CR}\mathrm{Z}}_i=\left[ \exp \left({\mathrm{CR}\mathrm{T}}_j\right)\right]/\left[1+ \exp \left({\mathrm{CR}\mathrm{T}}_j\right)\right]\hfill \end{array} $$

For each j:

$$ \begin{array}{l}{\mathrm{Pred}}_{ij}=1/\left[1 - {\mathrm{CRZ}}_i \times {\mathrm{IRZ}}_j\right]\hfill \\ {}{\mathrm{AUC}}_{\mathrm{ratio},ij}\sim N\left({\mathrm{pred}}_{ij},{\tau}_{\mathrm{AUC}}/{\mathrm{pred}}_{ij}\right)\hfill \end{array} $$
τ CR~:

G(4,1)

τ IR~:

G(4,1)

τ AUC~G(0.2,1):

to estimate imprecision on AUC ratios.

τ AUC =:

1 otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loue, C., Tod, M. Reliability and Extension of Quantitative Prediction of CYP3A4-Mediated Drug Interactions Based on Clinical Data. AAPS J 16, 1309–1320 (2014). https://doi.org/10.1208/s12248-014-9663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9663-y

KEY WORDS

Navigation