Skip to main content
Log in

Quantitative Prediction of Drug Interactions Caused by CYP1A2 Inhibitors and Inducers

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

A simple method to predict drug–drug interactions mediated by cytochrome P450 enzymes (CYPs) on the basis of in vivo data has been previously applied for several CYP isoforms but not for CYP1A2. The objective of this study was to extend this method to drug interactions caused by CYP1A2 inhibitors and inducers.

Methods

First, initial estimates of the model parameters were obtained using data from the literature. Then, an external validation of these initial estimates was performed by comparing model-based predicted area under the concentration–time curve (AUC) ratios with observations not used in the initial estimation. Third, refined estimates of the model parameters were obtained by Bayesian orthogonal regression using Winbugs software, and predicted AUC ratios were compared with all available observations. Finally, predicted AUC ratios for all possible substrates–inhibitors and substrates–inducers were computed.

Results

A total of 100 AUC ratios were retrieved from the literature. Model parameters were estimated for 19 CYP1A2 substrate drugs, 26 inhibitors and seven inducers, including tobacco smoking. In the external validation, the mean prediction error of the AUC ratios was −0.22, while the mean absolute error was 0.97 (37 %). After the Bayesian estimation step, the mean prediction error was 0.11, while the mean absolute error was 0.43 (22 %). The AUC ratios for 625 possible interactions were computed.

Conclusion

This analysis provides insights into the interaction profiles of drugs poorly studied so far and can help to identify and manage significant interactions in clinical practice. Those results are now available to the community via a web tool (http://www.ddi-predictor.org).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270:414–23.

    CAS  PubMed  Google Scholar 

  2. Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4:825–33.

    Article  CAS  PubMed  Google Scholar 

  3. Rasmussen BB, Brøsen K. Theophylline has no advantages over caffeine as a putative model drug for assessing CYPIA2 activity in humans. Br J Clin Pharmacol. 1997;43:253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46:681–96.

    Article  CAS  PubMed  Google Scholar 

  5. Ohno Y, Hisaka A, Ueno M, Suzuki H. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47:669–80.

    Article  CAS  PubMed  Google Scholar 

  6. Tod M, Goutelle S, Clavel-Grabit F, Nicolas G, Charpiat B. Quantitative prediction of cytochrome P450 (CYP) 2D6-mediated drug interactions. Clin Pharmacokinet. 2011;50:519–30.

    Article  CAS  PubMed  Google Scholar 

  7. Goutelle S, Bourguignon L, Bleyzac N, Berry J, Clavel-Grabit F, Tod M. In vivo quantitative prediction of the effect of gene polymorphisms and drug interactions on drug exposure for CYP2C19 substrates. AAPS J. 2013;15:415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Castellan A-C, Tod M, Gueyffier F, Audars M, Cambriels F, Kassaï B, et al. Quantitative prediction of the impact of drug interactions and genetic polymorphisms on cytochrome P450 2C9 substrate exposure. Clin Pharmacokinet. 2013;52:199–209.

    Article  CAS  PubMed  Google Scholar 

  9. Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000;39:127–53.

    Article  CAS  PubMed  Google Scholar 

  10. Spiegelhalter D, Thomas A, Best N, Lunn D. Winbugs 1.4.3 user manual. Cambridge: MRC Biostatistics Unit; 2007.

    Google Scholar 

  11. Congdon P. Bayesian statistical modelling. Chichester: Wiley; 2001.

    Google Scholar 

  12. Becquemont L, Ragueneau I, Le Bot MA, Riche C, Funck-Brentano C, Jaillon P. Influence of the CYP1A2 inhibitor fluvoxamine on tacrine pharmacokinetics in humans. Clin Pharmacol Ther. 1997;61:619–27.

    Article  CAS  PubMed  Google Scholar 

  13. Buchan P, Wade A, Ward C, Oliver SD, Stewart AJ, Freestone S. Frovatriptan: a review of drug–drug interactions. Headache. 2002;42(Suppl 2):S63–73.

    Article  PubMed  Google Scholar 

  14. Granfors MT, Backman JT, Neuvonen M, Ahonen J, Neuvonen PJ. Fluvoxamine drastically increases concentrations and effects of tizanidine: a potentially hazardous interaction. Clin Pharmacol Ther. 2004;75:331–41.

    Article  CAS  PubMed  Google Scholar 

  15. Hägg S, Spigset O, Mjörndal T, Dahlqvist R. Effect of caffeine on clozapine pharmacokinetics in healthy volunteers. Br J Clin Pharmacol. 2000;49:59–63.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Härtter S, Nordmark A, Rose D-M, Bertilsson L, Tybring G, Laine K. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity. Br J Clin Pharmacol. 2003;56:679–82.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kaye CM, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet. 2000;39:243–54.

    Article  CAS  PubMed  Google Scholar 

  18. Klein A, Sami M, Selinger K. Mexiletine kinetics in healthy subjects taking cimetidine. Clin Pharmacol Ther. 1985;37:669–73.

    Article  CAS  PubMed  Google Scholar 

  19. Kletzl H, Zwanziger E, Kirkpatrick C, Luedin E. Effect of ciprofloxacin on the systemic exposure to erlotinib [abstract]. J Clin Oncol. 2008;26(Suppl):abstract no. 19047.

  20. Kunii T, Fukasawa T, Yasui-Furukori N, Aoshima T, Suzuki A, Tateishi T, et al. Interaction study between enoxacin and fluvoxamine. Ther Drug Monit. 2005;27:349–53.

    Article  CAS  PubMed  Google Scholar 

  21. Lahu G, Nassr N, Herzog R, Elmlinger M, Ruth P, Hinder M, et al. Effect of steady-state enoxacin on single-dose pharmacokinetics of roflumilast and roflumilast N-oxide. J Clin Pharmacol. 2011;51:586–93.

    Article  CAS  PubMed  Google Scholar 

  22. Lobo ED, Bergstrom RF, Reddy S, Quinlan T, Chappell J, Hong Q, et al. In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine. Clin Pharmacokinet. 2008;47:191–202.

    Article  CAS  PubMed  Google Scholar 

  23. Mirghani RA, Hellgren U, Westerberg PA, Ericsson O, Bertilsson L, Gustafsson LL. The roles of cytochrome P450 3A4 and 1A2 in the 3-hydroxylation of quinine in vivo. Clin Pharmacol Ther. 1999;66:454–60.

    Article  CAS  PubMed  Google Scholar 

  24. Orlando R, Padrini R, Perazzi M, De Martin S, Piccoli P, Palatini P. Liver dysfunction markedly decreases the inhibition of cytochrome P450 1A2-mediated theophylline metabolism by fluvoxamine. Clin Pharmacol Ther. 2006;79:489–99.

    Article  CAS  PubMed  Google Scholar 

  25. European Medicines Agency. Valdoxan: agomelatine. London: European Medicines Agency; 2015. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000915/human_med_001123.jsp&mid=WC0b01ac058001d124. Accessed 17 Feb 2015.

  26. European Medicines Agency. Zyprexa: olanzapine. London: European Medicines Agency; 2015. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000115/human_med_001189.jsp&mid=WC0b01ac058001d124. Accessed 17 Feb 2015.

  27. European Medicines Agency. Sycrest: asenapine. London: European Medicines Agency; 2015. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/001177/human_med_001379.jsp&mid=WC0b01ac058001d124. Accessed 17 Feb 2015.

  28. European Medicines Agency. Imnovid (previously pomalidomide Celgene): pomalidomide. London: European Medicines Agency; 2015. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002682/human_med_001669.jsp&mid=WC0b01ac058001d124. Accessed 17 Feb 2015.

  29. European Medicines Agency. Azilect: rasagiline. London: European Medicines Agency; 2015. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000574/human_med_000667.jsp&mid=WC0b01ac058001d124. Accessed 17 Feb 2015.

  30. Backman JT, Karjalainen MJ, Neuvonen M, Laitila J, Neuvonen PJ. Rofecoxib is a potent inhibitor of cytochrome P450 1A2: studies with tizanidine and caffeine in healthy subjects. Br J Clin Pharmacol. 2006;62:345–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Balogh A, Klinger G, Henschel L, Börner A, Vollanth R, Kuhnz W. Influence of ethinylestradiol-containing combination oral contraceptives with gestodene or levonorgestrel on caffeine elimination. Eur J Clin Pharmacol. 1995;48:161–6.

    Article  CAS  PubMed  Google Scholar 

  32. Bapiro TE, Sayi J, Hasler JA, Jande M, Rimoy G, Masselle A, et al. Artemisinin and thiabendazole are potent inhibitors of cytochrome P450 1A2 (CYP1A2) activity in humans. Eur J Clin Pharmacol. 2005;61:755–61.

    Article  CAS  PubMed  Google Scholar 

  33. Bendriss EK, Bechtel Y, Bendriss A, Humbert PH, Paintaud G, Magnette J, et al. Inhibition of caffeine metabolism by 5-methoxypsoralen in patients with psoriasis. Br J Clin Pharmacol. 1996;41:421–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brazier JL, Descotes J, Lery N, Ollagnier M, Evreux JC. Inhibition by idrocilamide of the disposition of caffeine. Eur J Clin Pharmacol. 1980;17:37–43.

    Article  CAS  PubMed  Google Scholar 

  35. Carbó M, Segura J, De la Torre R, Badenas JM, Camí J. Effect of quinolones on caffeine disposition. Clin Pharmacol Ther. 1989;45:234–40.

    Article  PubMed  Google Scholar 

  36. Christensen M, Tybring G, Mihara K, Yasui-Furokori N, Carrillo JA, Ramos SI, et al. Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin Pharmacol Ther. 2002;71:141–52.

    Article  CAS  PubMed  Google Scholar 

  37. Efthymiopoulos C, Bramer SL, Maroli A, Blum B. Theophylline and warfarin interaction studies with grepafloxacin. Clin Pharmacokinet. 1997;33(Suppl 1):39–46.

    Article  CAS  PubMed  Google Scholar 

  38. Jonkman JH, Sollie FA, Sauter R, Steinijans VW. The influence of caffeine on the steady-state pharmacokinetics of theophylline. Clin Pharmacol Ther. 1991;49:248–55.

    Article  CAS  PubMed  Google Scholar 

  39. Kinzig-Schippers M, Fuhr U, Zaigler M, Dammeyer J, Rüsing G, Labedzki A, et al. Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2. Clin Pharmacol Ther. 1999;65:262–74.

    Article  CAS  PubMed  Google Scholar 

  40. Lake CR, Rosenberg D, Quirk R. Phenylpropanolamine and caffeine use among diet center clients. Int J Obes. 1990;14:575–82.

    CAS  PubMed  Google Scholar 

  41. Liu L, Pan X, Liu H, Liu X, Yang H, Xie L, et al. Modulation of pharmacokinetics of theophylline by antofloxacin, a novel 8-amino-fluoroquinolone, in humans. Acta Pharmacol Sin. 2011;32:1285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. May DC, Jarboe CH, VanBakel AB, Williams WM. Effects of cimetidine on caffeine disposition in smokers and nonsmokers. Clin Pharmacol Ther. 1982;31:656–61.

    Article  CAS  PubMed  Google Scholar 

  43. Mays DC, Camisa C, Cheney P, Pacula CM, Nawoot S, Gerber N. Methoxsalen is a potent inhibitor of the metabolism of caffeine in humans. Clin Pharmacol Ther. 1987;42:621–6.

    Article  CAS  PubMed  Google Scholar 

  44. Michaud V, Mouksassi MS, Labbé L, Bélanger P-M, Ferron LA, Gilbert M, et al. Inhibitory effects of propafenone on the pharmacokinetics of caffeine in humans. Ther Drug Monit. 2006;28:779–83.

    Article  CAS  PubMed  Google Scholar 

  45. Momo K, Homma M, Osaka Y, Inomata S, Tanaka M, Kohda Y. Effects of mexiletine, a CYP1A2 inhibitor, on tizanidine pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2010;50:331–7.

    Article  CAS  PubMed  Google Scholar 

  46. Nicolau DP, Nightingale CH, Tessier PR, Fu Q, Xuan DW, Esguerra EM, et al. The effect of fleroxacin and ciprofloxacin on the pharmacokinetics of multiple dose caffeine. Drugs. 1995;49(Suppl 2):357–9.

    Article  CAS  PubMed  Google Scholar 

  47. Peng W-X, Li H-D, Zhou H-H. Effect of daidzein on CYP1A2 activity and pharmacokinetics of theophylline in healthy volunteers. Eur J Clin Pharmacol. 2003;59:237–41.

    Article  CAS  PubMed  Google Scholar 

  48. Sofowora GG, Choo EF, Mayo G, Shyr Y, Wilkinson GR. In vivo inhibition of human CYP1A2 activity by oltipraz. Cancer Chemother Pharmacol. 2001;47:505–10.

    Article  CAS  PubMed  Google Scholar 

  49. Takagi K, Hasegawa T, Ogura Y, Suzuki R, Yamaki K, Watanabe T, et al. Comparative studies on interaction between theophylline and quinolones. J Asthma. 1988;25:63–71.

    Article  CAS  PubMed  Google Scholar 

  50. Trépanier EF, Nafziger AN, Amsden GW. Effect of terbinafine on theophylline pharmacokinetics in healthy volunteers. Antimicrob Agents Chemother. 1998;42:695–7.

    PubMed  PubMed Central  Google Scholar 

  51. European Medicines Agency. Zelboraf: vemurafenib. London: European Medicines Agency; 2015. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002409/human_med_001544.jsp&mid=WC0b01ac058001d124. Accessed 17 Feb 2015.

  52. Backman JT, Granfors MT, Neuvonen PJ. Rifampicin is only a weak inducer of CYP1A2-mediated presystemic and systemic metabolism: studies with tizanidine and caffeine. Eur J Clin Pharmacol. 2006;62:451–61.

    Article  CAS  PubMed  Google Scholar 

  53. Backman JT, Schröder MT, Neuvonen PJ. Effects of gender and moderate smoking on the pharmacokinetics and effects of the CYP1A2 substrate tizanidine. Eur J Clin Pharmacol. 2008;64:17–24.

    Article  CAS  PubMed  Google Scholar 

  54. Darwish M, Kirby M, Robertson P, Hellriegel ET. Interaction profile of armodafinil with medications metabolized by cytochrome P450 enzymes 1A2, 3A4 and 2C19 in healthy subjects. Clin Pharmacokinet. 2008;47:61–74.

    Article  CAS  PubMed  Google Scholar 

  55. Dilger K, Zheng Z, Klotz U. Lack of drug interaction between omeprazole, lansoprazole, pantoprazole and theophylline. Br J Clin Pharmacol. 1999;48:438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gillum JG, Sesler JM, Bruzzese VL, Israel DS, Polk RE. Induction of theophylline clearance by rifampin and rifabutin in healthy male volunteers. Antimicrob Agents Chemother. 1996;40:1866–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lucas RA, Gilfillan DJ, Bergstrom RF. A pharmacokinetic interaction between carbamazepine and olanzapine: observations on possible mechanism. Eur J Clin Pharmacol. 1998;54:639–43.

    Article  CAS  PubMed  Google Scholar 

  58. Bachmann K, White D, Jauregui L, Schwartz JI, Agrawal NGB, Mazenko R, et al. An evaluation of the dose-dependent inhibition of CYP1A2 by rofecoxib using theophylline as a CYP1A2 probe. J Clin Pharmacol. 2003;43:1082–90.

    Article  CAS  PubMed  Google Scholar 

  59. Batty KT, Davis TM, Ilett KF, Dusci LJ, Langton SR. The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmacol. 1995;39:305–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beckmann J, Elsässer W, Gundert-Remy U, Hertrampf R. Enoxacin—a potent inhibitor of theophylline metabolism. Eur J Clin Pharmacol. 1987;33:227–30.

    Article  CAS  PubMed  Google Scholar 

  61. Broughton LJ, Rogers HJ. Decreased systemic clearance of caffeine due to cimetidine. Br J Clin Pharmacol. 1981;12:155–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fukasawa T, Yasui-Furukori N, Suzuki A, Ishii G, Inoue Y, Tateishi T, et al. Effects of caffeine on the kinetics of fluvoxamine and its major metabolite in plasma after a single oral dose of the drug. Ther Drug Monit. 2006;28:308–11.

    Article  CAS  PubMed  Google Scholar 

  63. Fulton B, Goa KL. Olanzapine: a review of its pharmacological properties and therapeutic efficacy in the management of schizophrenia and related psychoses. Drugs. 1997;53:281–98.

    Article  CAS  PubMed  Google Scholar 

  64. Gardner MJ, Tornatore KM, Jusko WJ, Kanarkowski R. Effects of tobacco smoking and oral contraceptive use on theophylline disposition. Br J Clin Pharmacol. 1983;16:271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Granfors MT, Backman JT, Laitila J, Neuvonen PJ. Oral contraceptives containing ethinyl estradiol and gestodene markedly increase plasma concentrations and effects of tizanidine by inhibiting cytochrome P450 1A2. Clin Pharmacol Ther. 2005;78:400–11.

    Article  CAS  PubMed  Google Scholar 

  66. Granfors MT, Backman JT, Neuvonen M, Neuvonen PJ. Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism. Clin Pharmacol Ther. 2004;76:598–606.

    Article  CAS  PubMed  Google Scholar 

  67. Hamilton M, Wolf JL, Rusk J, Beard SE, Clark GM, Witt K, et al. Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res. 2006;12:2166–71.

    Article  CAS  PubMed  Google Scholar 

  68. Healy DP, Polk RE, Kanawati L, Rock DT, Mooney ML. Interaction between oral ciprofloxacin and caffeine in normal volunteers. Antimicrob Agents Chemother. 1989;33:474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hurwitz A, Vacek JL, Botteron GW, Sztern MI, Hughes EM, Jayaraj A. Mexiletine effects on theophylline disposition. Clin Pharmacol Ther. 1991;50:299–307.

    Article  CAS  PubMed  Google Scholar 

  70. Jeppesen U, Loft S, Poulsen HE, Brśen K. A fluvoxamine–caffeine interaction study. Pharmacogenetics. 1996;6:213–22.

    Article  CAS  PubMed  Google Scholar 

  71. Joeres R, Klinker H, Heusler H, Epping J, Richter E. Influence of mexiletine on caffeine elimination. Pharmacol Ther. 1987;33:163–9.

    Article  CAS  PubMed  Google Scholar 

  72. Kusumoto M, Ueno K, Tanaka K, Takeda K, Mashimo K, Kameda T, et al. Lack of pharmacokinetic interaction between mexiletine and omeprazole. Ann Pharmacother. 1998;32:182–4.

    Article  CAS  PubMed  Google Scholar 

  73. Labbé L, Abolfathi Z, Robitaille NM, St-Maurice F, Gilbert M, Turgeon J. Stereoselective disposition of the antiarrhythmic agent mexiletine during the concomitant administration of caffeine. Ther Drug Monit. 1999;21:191–9.

    Article  PubMed  Google Scholar 

  74. Labbé L, Robitaille NM, Lefez C, Potvin D, Gilbert M, O’Hara G, et al. Effects of ciprofloxacin on the stereoselective disposition of mexiletine in man. Ther Drug Monit. 2004;26:492–8.

    Article  PubMed  Google Scholar 

  75. Larsen JT, Hansen LL, Spigset O, Brøsen K. Fluvoxamine is a potent inhibitor of tacrine metabolism in vivo. Eur J Clin Pharmacol. 1999;55:375–82.

    Article  CAS  PubMed  Google Scholar 

  76. Mahr G, Sörgel F, Granneman GR, Kinzig M, Muth P, Patterson K, et al. Effects of temafloxacin and ciprofloxacin on the pharmacokinetics of caffeine. Clin Pharmacokinet. 1992;22(Suppl 1):90–7.

    Article  CAS  PubMed  Google Scholar 

  77. McGechan A, Wellington K. Ramelteon. CNS Drugs. 2005;19:1057–65 (discussion 1066–7).

    Article  CAS  PubMed  Google Scholar 

  78. Pentikäinen PJ, Koivula IH, Hiltunen HA. Effect of rifampicin treatment on the kinetics of mexiletine. Eur J Clin Pharmacol. 1982;23:261–6.

    Article  PubMed  Google Scholar 

  79. Rasmussen BB, Jeppesen U, Gaist D, Brøsen K. Griseofulvin and fluvoxamine interactions with the metabolism of theophylline. Ther Drug Monit. 1997;19:56–62.

    Article  CAS  PubMed  Google Scholar 

  80. Robson RA, Begg EJ, Atkinson HC, Saunders DA, Frampton CM. Comparative effects of ciprofloxacin and lomefloxacin on the oxidative metabolism of theophylline. Br J Clin Pharmacol. 1990;29:491–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rost KL, Fuhr U, Thomsen T, Zaigler M, Brockmöller J, Bohnemeier H, et al. Omeprazole weakly inhibits CYP1A2 activity in man. Int J Clin Pharmacol Ther. 1999;37:567–74.

    CAS  PubMed  Google Scholar 

  82. Schwartz J, Jauregui L, Lettieri J, Bachmann K. Impact of ciprofloxacin on theophylline clearance and steady-state concentrations in serum. Antimicrob Agents Chemother. 1988;32:75–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Spigset O, Carleborg L, Hedenmalm K, Dahlqvist R. Effect of cigarette smoking on fluvoxamine pharmacokinetics in humans. Clin Pharmacol Ther. 1995;58:399–403.

    Article  CAS  PubMed  Google Scholar 

  84. Stille W, Harder S, Mieke S, Beer C, Shah PM, Frech K, et al. Decrease of caffeine elimination in man during co-administration of 4-quinolones. J Antimicrob Chemother. 1987;20:729–34.

    Article  CAS  PubMed  Google Scholar 

  85. Stoysich AM, Mohiuddin SM, Destache CJ, Nipper HC, Hilleman DE. Influence of mexiletine on the pharmacokinetics of theophylline in healthy volunteers. J Clin Pharmacol. 1991;31:354–7.

    Article  CAS  PubMed  Google Scholar 

  86. Von Richter O, Lahu G, Huennemeyer A, Herzog R, Zech K, Hermann R. Effect of fluvoxamine on the pharmacokinetics of roflumilast and roflumilast N-oxide. Clin Pharmacokinet. 2007;46:613–22.

    Article  Google Scholar 

  87. Tod M, Goutelle S, Gagnieu MC. Genotype-based quantitative prediction of drug exposure for drugs metabolized by CYP2D6. Clin Pharmacol Ther. 2011;90:582–7.

    Article  CAS  PubMed  Google Scholar 

  88. Tod M, Nkoud-Mongo C, Gueyffier F. Impact of genetic polymorphism on drug–drug interactions mediated by cytochromes: a general approach. AAPS J. 2013;15:1242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br J Clin Pharmacol. 2004;57:473–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Obach RS, Walsky RL, Venkatakrishnan K, Gaman EA, Houston JB, Tremaine LM. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug–drug interactions. J Pharmacol Exp Ther. 2006;316:336–48.

    Article  CAS  PubMed  Google Scholar 

  91. Marsousi N, Daali Y, Rudaz S, Almond L, Humphries H, Desmeules J, et al. Prediction of metabolic interactions with oxycodone via CYP2D6 and CYP3A inhibition using a physiologically based pharmacokinetic model. CPT Pharmacometrics Syst Pharmacol. 2014;3:e152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Karjalainen MJ, Neuvonen PJ, Backman JT. In vitro inhibition of CYP1A2 by model inhibitors, anti-inflammatory analgesics and female sex steroids: predictability of in vivo interactions. Basic Clin Pharmacol Toxicol. 2008;103(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  93. Karjalainen MJ, Neuvonen PJ, Backman JT. Tolfenamic acid is a potent CYP1A2 inhibitor in vitro but does not interact in vivo: correction for protein binding is needed for data interpretation. Eur J Clin Pharmacol. 2007;63(9):829–36.

    Article  CAS  PubMed  Google Scholar 

  94. US Food and Drug Administration. Guidance for industry: drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. Rockville: US Food and Drug Administration, 2012. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm292362.pdf. Accessed 15 Dec 2012.

  95. Faber MS, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol. 2005;97:125–34.

    Article  CAS  PubMed  Google Scholar 

  96. Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brøsen K. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol. 1996;51(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  97. Obach RS, Ryder TF. Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Drug Metab Dispos. 2010;38:1381–91.

    Article  CAS  PubMed  Google Scholar 

  98. Zhou S-F, Yang L-P, Zhou Z-W, Liu Y-H, Chan E. Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J. 2009;11:481–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. PharmGKB. Gene: CYP1A2. Stanford: PharmGKB; 2015. https://www.pharmgkb.org/gene/PA27093#tabview=tab3&subtab=32. Accessed 29 Aug 2015.

  100. Genophar II Working Group. DDI-predictor. Lentilly: Genophar II Working Group; 2015. http://www.ddi-predictor.org. Accessed 1 Feb 2016.

Download references

Acknowledgments

This work was presented in part at the 2015 Meeting of the French Society of Pharmacology and Therapeutics (SFPT); Caen, France; 21–23 April 2015. This study was not supported by any academic, company or sponsor funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Goutelle.

Ethics declarations

Conflict of interest

Laurence Gabriel, Michel Tod and Sylvain Goutelle have no potential conflicts of interest that might be relevant to the content of this study.

Appendix

Appendix

This “Appendix” illustrates the application of the general model for multiple CYP-mediated drug interactions to the case of interactions with ramelteon as the victim drug.

The model for an interaction mediated by three cytochromes (denoted 1, 2 and 3) and caused by an inhibitor and an inducer is described by Eqs. 8 and 9, respectively [88]:

$$ \frac{{{\text{AUC}}^{*} }}{\text{AUC}} = \frac{{{\text{CR}}_{1} + {\text{CR}}_{2} + {\text{CR}}_{3} + (1 - {\text{CR}}_{1} - {\text{CR}}_{2} - {\text{CR}}_{3} )}}{{{\text{CR}}_{1} \cdot (1 - {\text{IR}}_{1} ) + {\text{CR}}_{2} \cdot (1 - {\text{IR}}_{2} ) + {\text{CR}}_{3} \cdot (1 - {\text{IR}}_{3} ) + (1 - {\text{CR}}_{1} - {\text{CR}}_{2} - {\text{CR}}_{3} )}} $$
(8)
$$ \frac{{{\text{AUC}}^{*} }}{\text{AUC}} = \frac{{{\text{CR}}_{1} + {\text{CR}}_{2} + {\text{CR}}_{3} + (1 - {\text{CR}}_{1} - {\text{CR}}_{2} - {\text{CR}}_{3} )}}{{{\text{CR}}_{1} \cdot (1 + {\text{IC}}_{1} ) + {\text{CR}}_{2} \cdot (1 + {\text{IC}}_{2} ) + {\text{CR}}_{3} \cdot (1 + {\text{IC}}_{3} ) + (1 - {\text{CR}}_{1} - {\text{CR}}_{2} - {\text{CR}}_{3} )}} $$
(9)

The estimated IRs of fluvoxamine are as follows: ICCYP1A2 = 1, ICCYP2C19 = 0.98, IRCYP3A4 = 0.3.

The estimated ICs of rifampicin are as follows: ICCYP1A2 = 1.45, ICCYP2C19 = 4.2, ICCYP3A4 = 7.7.

Ramelteon is metabolized by CYP1A2, CYP2C19 and CYP3A4, with contribution ratios estimated from in vitro data as follows [93]: CRCYP1A2 = 0.49, CRCYP2C19 = 0.42, CRCYP3A4 = 0.086 (CR set 1).

Because the CRs of ramelteon have not been estimated in vivo, one might also consider another set of CR values. For example, we may assume that the contribution of CYP3A4 might be lower or even negligible in vivo, with CRCYP1A2 = 0.57, CRCYP2C19 = 0.42, CRCYP3A4 = 0.01 (CR set 2), or CRCYP1A2 = 0.58, CRCYP2C19 = 0.42, CRCYP3A4 = 0 (CR set 3).

The predicted magnitude of the drug interactions is shown in Table 7.

Table 7 Predicted magnitudes of ramelteon drug interactions

As one can see, for the interaction caused by fluvoxamine, the predicted AUC ratio strongly depends on the estimated CRs for ramelteon, because fluvoxamine is a very potent inhibitor of CYP1A2 and CYP2C19, with IR values close to 1. Decreasing the CR of CYP3A4 and increasing the CR of CYP1A2/CYP2C19 result in a larger predicted AUC ratio, which better agrees with the observed ratio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabriel, L., Tod, M. & Goutelle, S. Quantitative Prediction of Drug Interactions Caused by CYP1A2 Inhibitors and Inducers. Clin Pharmacokinet 55, 977–990 (2016). https://doi.org/10.1007/s40262-016-0371-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0371-x

Keywords

Navigation