Skip to main content
Log in

Glyceraldehyde-3-phosphate dehydrogenase promoter from enoki mushroom drove gene expression of exogenous cellulase in Aspergillus niger

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lacking the system balance of Aspergillus niger cellulase limits synergistic saccharification of biomass material. To improve the overall expression level of A. niger cellulase system, eukaryotic expression vector containing Ampullaria gigas spix cellulase gene was constructed. Using the method of protoplast-mediated transformation, cellulase gene from A. gigas spix was genetically integrated into A. niger genome. The enoki mushroom glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter could effectively drive gene expression of exogenous cellulase sestc gene in A.niger. Filter paper activity (total cellulase activity) of the transformant No. 17 (1.736 ± 0.051 Uml−1) induced by wheat bran was 1.21-fold higher compared with that of the A.niger wild type. Beta-endo-1-4-glucanase, beta-exo-1-4-glucanase, and xylanase produced by the engineered A.niger were 1.37-fold, 1.25-fold, and 1.3-fold higher than those of the wild-type strain. Total cellulase activity of A. niger transformant No. 17 induced by alkaline-pretreated rice straw reached 1.476 ± 0.021 FPU ml−1, which was 1.31-fold higher compared with the wild type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singhania RR, Saini R, Adsul M et al (2015) An integrative process for bio-ethanol production employing SSF produced cellulase without extraction. Biochem Eng J 102:45–48

    Article  Google Scholar 

  2. Bhattacharya AS, Bhattacharya A, Pletschke BI (2015) Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett 37(6):1117–1129

    Article  Google Scholar 

  3. Vijayaraghavan P, Prakash Vincent SG, Dhillon GS (2016) Solid-substrate bioprocessing of cow dung for the production of carboxymethyl cellulase by Bacillus halodurans IND18. Waste Manag 48:513–520

    Article  Google Scholar 

  4. Ghassemi S, Lichius A, Bidard F et al (2015) The ß-importin KAP8 (Pse1/Kap121) is required for nuclear import of the cellulase transcriptional regulator XYR1, asexual sporulation and stress resistance in Trichoderma reesei. Mol Microbiol 96(2):405–418

    Article  Google Scholar 

  5. Laothanachareon T, Bunterngsook B, Suwannarangsee S et al (2015) Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation. Bioresour Technol 198:682–690

    Article  Google Scholar 

  6. Hu L, Taujale R, Liu F et al (2016) Draft genome sequence of Talaromyces verruculosus (“Penicillium verruculosum”) strain TS63-9, a fungus with great potential for industrial production of polysaccharide-degrading enzymes. J Biotechnol 219:5–6

    Article  Google Scholar 

  7. Hamid SBA, Islam MM, Das R (2015) Cellulase biocatalysis: key influencing factors and mode of action. Cellulose 22(4):2157–2182

    Article  Google Scholar 

  8. Cavaco-Paulo A (1998) Mechanism of cellulase action in textile processes. Carbohydr Polym 37(3):273–277

    Article  Google Scholar 

  9. Brunecky R, Alahuhta M, Xu Q et al (2013) Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342(6165):1513–1516

    Article  Google Scholar 

  10. Amel BD, Nawel B, Khelifa B et al (2016) Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp nov strain TH7C1(T). Carbohydr Res 419:60–68

    Article  Google Scholar 

  11. Harini S, Kumaresan R (2014) Production of cellulase from corn cobs by Aspergillus niger under submerged fermentation. International Journal of Chemtech Research 6(5):2900–2904

    Google Scholar 

  12. Pengilly C, Garc A-Aparicio MP, Diedericks D et al (2015) Enzymatic hydrolysis of steam-pretreated sweet sorghum bagasse by combinations of cellulase and endo-xylanase. Fuel 154:352–360

    Article  Google Scholar 

  13. Wilkins MR, Widmer WW, Grohmann K et al (2007) Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresour Technol 98(8):1596–1601

    Article  Google Scholar 

  14. Yang P, Guo L, Cheng S et al (2011) Recombinant multi-functional cellulase activity in submerged fermentation of lignocellulosic wastes. Renew Energy 36(12):3268–3272

    Article  Google Scholar 

  15. Tomassetti S, Pontiggia D, Verrascina I et al (2015) Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth. Phytochemistry 112:221–230

    Article  Google Scholar 

  16. Phitsuwan P, Laohakunjit N, Kerdchoechuen O et al (2013) Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiol 58(2):163–176

    Article  Google Scholar 

  17. Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101(13):4980–4991

    Article  Google Scholar 

  18. Singh A, Taylor LE II, Wall TAV et al (2014) Heterologous protein expression in Hypocrea jecorina: a historical perspective and new developments. Biotechnol Adv 33(1):142–154

    Article  Google Scholar 

  19. Vester JK, Glaring MA, Stougaard P (2015) Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 19(1):17–29

    Article  Google Scholar 

  20. Wood TM (1971) The cellulase of fusarium solani. Purification and specificity of the β-(1-4)-glucanase and the β-D-glucosidase components. Biochem J 121(3):353–362

    Article  Google Scholar 

  21. Burapatana V, Booth EA, Ales Prokop A et al (2005) Effect of buffer and pH on detergent-assisted foam fractionation of cellulase. Ind Eng Chem Res 44(14):4968–4972

    Article  Google Scholar 

  22. Sawant SS, Salunke BK, Kim BS (2015) Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1. Bioresour Technol 194:247–255

    Article  Google Scholar 

  23. Cheng S, Yang P, Guo L et al (2009) Expression of multi-functional cellulase gene mfc in Coprinus cinereus under control of different basidiomycete promoters. Bioresour Technol 100(19):4475–4480

    Article  Google Scholar 

  24. Dotsenko GS, Gusakov AV, Rozhkova AM et al (2015) Heterologous β-glucosidase in a fungal cellulase system: comparison of different methods for development of multienzyme cocktails. Process Biochem 50(8):1258–1263

    Article  Google Scholar 

  25. Ottenheim C, Werner KA, Zimmermann W et al (2015) Improved endoxylanase production and colony morphology of Aspergillus niger DSM 26641 by γ-ray induced mutagenesis. Biochem Eng J 94:9–14

    Article  Google Scholar 

  26. Jin X, Xia L (2011) Heterologous expression of an endo-β-1,4-glucanase gene from the anaerobic fungus Orpinomyces PC-2 in Trichoderma reesei. World J Microbiol Biotechnol 27(12):2913–2920

    Article  Google Scholar 

  27. Kasana RC, Salwan R, Dhar H et al (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr Microbiol 57(5):503–507

    Article  Google Scholar 

  28. Hao R, Adoligbe C, Jiang B et al (2015) An optimized Trichloroacetic acid/acetone precipitation method for two-dimensional gel electrophoresis analysis of qinchuan cattle longissimus dorsi muscle containing high proportion of marbling. PLoS One 10(4):12–16

    Google Scholar 

  29. Mei H-Z, Xia D-G, Zhao Q-L et al (2016) Molecular cloning, expression, purification and characterization of a novel cellulase gene (Bh-EGaseI) in the beetle Batocera horsfieldi. Gene 576(1, Part 1):45–51

    Article  Google Scholar 

  30. Pandiyan K, Tiwari R, Rana S et al (2014) Comparative efficiency of different pretreatment methods on enzymatic digestibility of Parthenium sp. World J Microbiol Biotechnol 30(1):55–64

    Article  Google Scholar 

  31. Lee YJ, Kim BK, Lee BH et al (2008) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour Technol 99(2):378–386

    Article  Google Scholar 

  32. Ghose TK (2009) Measurement of cellulase activities. Pure & Applied Chemistry 59(2):257–268

    Google Scholar 

  33. Ghose T (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  Google Scholar 

  34. Oberoi HS, Rawat R, Chadha BS (2014) Response surface optimization for enhanced production of cellulases with improved functional characteristics by newly isolated Aspergillus niger HN-2. Anton Leeuw Int J Gen Mol Microbiol 105(1):119–134

    Article  Google Scholar 

  35. Fang H, Xia L (2013) High activity cellulase production by recombinant Trichoderma reesei ZU-02 with the enhanced cellobiohydrolase production. Bioresour Technol 144:693–697

    Article  Google Scholar 

  36. Treebupachatsakul T, Shioya K, Nakazawa H et al (2015) Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus beta-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass. J Biosci Bioeng 120(6):657–665

    Article  Google Scholar 

  37. Shirkavand E, Baroutian S, Gapes DJ et al (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment—a review. Renew Sustain Energy Rev 54:217–234

    Article  Google Scholar 

  38. Dos Santos Castro L, Pedersoli WR, Antoni to ACC et al (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnology for Biofuels 7(41):1–17

    Google Scholar 

  39. Ali N, Ting Z, Li H et al (2015) Heterogeneous expression and functional characterization of cellulose-degrading enzymes from Aspergillus niger for enzymatic hydrolysis of alkali pretreated bamboo biomass. Mol Biotechnol 57(9):859–867

    Article  Google Scholar 

  40. Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. Biotech 3(5):415–431

    Google Scholar 

  41. Juhasz T, Szengyel Z, Reczey K et al (2005) Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 40(11):3519–3525

    Article  Google Scholar 

  42. Salihu A, Abbas O, Sallau AB et al (2015) Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment. Biotech 5(6):1101–1106

  43. Li P-J, Xia J-L, Shan Y et al (2015) Comparative study of multi-enzyme production from typical agro-industrial residues and ultrasound-assisted extraction of crude enzyme in fermentation with Aspergillus japonicus PJ01. Bioprocess Biosyst Eng 38(10):2013–2022

    Article  Google Scholar 

  44. Baba Y, Sumitani J-I, TANI S et al (2015) Characterization of Aspergillus aculeatus beta-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma cellulase system. AMB Express 5:1–9

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Anhui Provincial Natural Science Foundation (1408085MC67) and the Key Science and Technology Program of Anhui Province (No.1604a0702001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peizhou Yang.

Electronic supplementary material

ESM 1

(DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Zhang, H. & Zheng, Z. Glyceraldehyde-3-phosphate dehydrogenase promoter from enoki mushroom drove gene expression of exogenous cellulase in Aspergillus niger . Biomass Conv. Bioref. 8, 11–17 (2018). https://doi.org/10.1007/s13399-016-0226-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-016-0226-6

Keywords

Navigation