Skip to main content
Log in

Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The complex structure of lignocellulose requires the involvement of a suite of lignocellulolytic enzymes for bringing about an effective de-polymerization. Cellulases and hemicellulases from both fungi and bacteria have been studied extensively. This review illustrates the mechanism of action of different cellulolytic and hemi-cellulolytic enzymes and their distinctive roles during hydrolysis. It also examines how different approaches can be used to improve the synergistic interaction between fungal and bacterial glycosyl hydrolases with a focus on fungal cellulases and bacterial hemicellulases. The approach entails the role of cellulosomes and their improvement through incorporation of novel enzymes and evaluates the recent break-through in the construction of designer cellulosomes and their extension towards improving fungal and bacterial synergy. The proposed approach also advocates the incorporation and cell surface display of designer cellulosomes on non-cellulolytic solventogenic strains along with the innovative application of combined cross-linked enzyme aggregates (combi-CLEAs) as an economically feasible and versatile tool for improving the synergistic interaction through one-pot cascade reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adav SS, Chao LT, Sze SK (2012) Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Mol Proteomics 11(7):M111.012419. doi:10.1074/mcp.M111,012419

  • Arfia Y, Shamshouma M, Rogachevb I et al (2014) Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci USA 111:9109–9114

    Article  Google Scholar 

  • Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

    Article  CAS  PubMed  Google Scholar 

  • Baker JO, Adney WS, Thomas SR et al (1995) Synergism between purified bacterial and fungal cellulases. Enzym Degrad Ins Carb 618:113–141

    Article  CAS  Google Scholar 

  • Baker JO, Ehrman CI, Adney WS et al (1998) Hydrolysis of cellulose using ternary mixtures of purified celluloses. Appl Biochem Biotech 70–72:395–403

    Article  Google Scholar 

  • Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237–245

    Article  CAS  PubMed  Google Scholar 

  • Beckham GT, Matthews JF, Bomble YJ et al (2010) Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. J Phys Chem B 114:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya A, Pletschke BI (2014) Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes. Enz Microb Technol 61–62:17–27

    Article  Google Scholar 

  • Bhattacharya A, Shrivastava A, Sharma A (2013) Evaluation of enhanced thermostability and operational stability of carbonic anhydrase from Micrococcus species. Appl Biochem Biotechnol 170:756–763

    Article  CAS  PubMed  Google Scholar 

  • Binod P, Janu KU, Sindhu R et al (2011) Hydrolysis of lignocellulosic biomass for bioethanol production. In: Pandey A, Larroche C, Ricke SC (eds) Biofuels: alternative feedstocks and conversion processes. Elsevier Inc., Amsterdam, pp 229–250

    Chapter  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ et al (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunecky R, Alahuta M, Xu Q (2013) Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342:1513

    Article  CAS  PubMed  Google Scholar 

  • Carrard G, Koivula A, Soderlund H et al (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97:10342–10347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costaouec TL, Pakarinen A, Varnai A et al (2013) The role of carbohydrate binding module (CBM) at high substrate consistency: Comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Bioresour Technol 143:196–203

    Article  PubMed  Google Scholar 

  • Dalal S, Sharma A, Gupta MN (2007) A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities. Chem Cent J 1:1–5

    Article  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Den Haan R, Van Zyl WH (2003) Enhanced xylan degradation and utilisation by Pichia stipitis overproducing fungal xylanolytic enzymes. Enz Microb Technol 33:620–662

    Article  Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216

    Article  CAS  PubMed  Google Scholar 

  • Do TT, Quyen DT, Nguyen TN et al (2013) Molecular characterization of a glycosyl hydrolase family 10 xylanase from Aspergillus niger. Prot Expr Purif 92:196–202

    Article  CAS  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 202:541–551

    Article  Google Scholar 

  • Doi RH, Kosugi A, Murashima K et al (2003) Cellulosomes from mesophilic bacteria. J Bacteriol 185:5907–5914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elkins JG, Raman B, Keller M (2010) Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr Opin Biotechnol 21:657–662

    Article  CAS  PubMed  Google Scholar 

  • Fierobe H-P, Bayer EA, Tardif C et al (2002) Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 277:49621–49630

    Article  CAS  PubMed  Google Scholar 

  • Fierobe H-P, Mingardon F, Mechaly A et al (2005) Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem 280:16325–16334

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Chundawat SPS, Krishnan C et al (2010) Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 101:2770–2781

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Uppugundla N, Chundawat SPS et al (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuel 4:5

    Article  CAS  Google Scholar 

  • Gefen G, Anbar M, Morag E et al (2012) Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Proc Natl Acad Sci USA 109:10298–10303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grun CH, Dekker N, Nieuwland AA et al (2006) Mechanism of action of the endo-(1-3)-α-glucanase MutAp from the mycoparasitic fungus Trichoderma harzianum. FEBS Lett 580:3780–3786

    Article  PubMed  Google Scholar 

  • Han Y, Kye C, Hong S (2006) A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl Microbiol Biotechnol 73:618–630

    Article  Google Scholar 

  • Hasper AA, Dekkers E, Mil M et al (2002) EglC a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl Environ Microbiol 68:1556–1560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hatada Y, Takeda N, Hirasawa K et al (2005) Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in B. subtilis and characterization of the recombinant enzyme. Extremophiles 9:497–500

    Article  CAS  PubMed  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–809

    Article  CAS  PubMed  Google Scholar 

  • Hogg D, Pell G, Dupree et al (2003) The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem J 371:1027–1043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B et al (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuel 5:45

    Article  CAS  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuel 4:36

    Article  CAS  Google Scholar 

  • Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism and binding domain effects. Biotechnol Bioeng 42:1002–1013

    Article  CAS  PubMed  Google Scholar 

  • Jeon Eugene, Hyeon Jeong-eun, Suh Dong Jin et al (2009) Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes. Mol Cell 28:369–373

    Article  CAS  Google Scholar 

  • Johnson EA, Sakajoh M, Halliwell G, Madia A, Demain AL (1982) Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl Env Microbiol 43:1125–1132

    CAS  Google Scholar 

  • Juturu V, Wu JC (2012) Microbial xylanases. Engineering, production and applications. Biotechnol Adv 30:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Kosugi A, Murashima K (2002) Doi RH Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation. Appl Environ Microbiol 68:6399–6402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kovacs K, Willson BJ, Schwarz K (2013) Secretion and assembly of functional mini cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824. Biotechnol Biofuel 6:117

    Article  CAS  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A et al (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecornia. Biotechnol Biofuels 2:19

    Article  PubMed Central  PubMed  Google Scholar 

  • La Grange DC, den Haan R, Willem H et al (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87:1195–1208

    Article  CAS  PubMed  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ et al (2008) Glycosyltransferases: structures functions and mechanisms. Ann Rev Biochem 77:521–555

    Article  CAS  PubMed  Google Scholar 

  • Lee HL, Chang CK, Jeng WY et al (2012) Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Eng Des Sel. doi:10.1093/protein/gzs073

    Google Scholar 

  • Li DC, Li AN, Papageorgiou AC (2011) Cellulases from thermophilic fungi recent insights and biotechnological potential. Enzym Res. doi:10.4061/2011/308730

    Google Scholar 

  • Liu T, Yun H, Zhang AC et al (2012) Aspergillus niger DLFCC-90 rhamnoside hydrolase, a new type of flavonoid glycoside hydrolase. Appl Environ Microbiol 78:4752–4754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ljungdahl LG (2008) The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann NY Acad Sci 1125:308–321

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Golaconda Ramalu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acid Res 42:D490–D495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martınez D, Berka RM, Henrissat B et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:513–560

    Google Scholar 

  • Master ER, Zheng Y, Storms R et al (2008) A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger recombinant expression, purification and characterization. Biochem J 411:161–170

    Article  CAS  PubMed  Google Scholar 

  • Mingardon F, Chanal A, Lopez-Contreras AM et al (2007) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822–3832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohanram S, Amat D, Choudhary J et al (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustain Chem Proc 1:15

    Article  Google Scholar 

  • Nascimento AS, Muniz JRC, Aparıcio R et al (2014) Insights into the structure and function of fungal β-mannosidases from glycoside hydrolase family 2 based on multiple crystal structures of the Trichoderma harzianum enzyme. FEBS J 281:4165–4178

    Article  CAS  PubMed  Google Scholar 

  • Olson DG, Tripathi SA, Richard J et al (2010) Deletion of the Cel48S cellulase from Clostridium thermocellum. Proc Natl Acad Sci USA 107:17727–17732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paes G, Berrin J-G, Beaugrand J (2012) GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 30:564–592

    Article  CAS  PubMed  Google Scholar 

  • Pham Hoa PT, Quyen DT et al (2011) Cloning, expression, purification, and properties of an endoglucanase gene (glycosyl hydrolase family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris. J Microbiol Biotechnol 21:1012–1020

    Article  CAS  PubMed  Google Scholar 

  • Piotek M, Hagedorn J, Hollenberg CP et al (1998) Two novel gene expression systems based on the yeasts Schwanniomyces occidentalis and Pichia stipitis. Appl Microbiol Biotechnol 50:331–338

    Article  Google Scholar 

  • Prassad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  • Prates JA, Tarbouriech N, Charnock SJ et al (2001) The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. Structure 9:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich ML, Melnick MS, Bolobova AV (2002) The structure and mechanism of action of cellulolytic enzymes. Biochemistry 67:1026–1050

    Google Scholar 

  • Rakotoarivonina H, Hermant B, Monthe N et al (2012) The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microb Cell Fact 11:159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rojas AL, Fischer H, Elena V et al (2005) Structural insights into the α-xylosidase from Trichoderma reesei obtained by synchrotron small-angle X-ray scattering and circular dichroism spectroscopy. Biochemistry 44:15578–15584

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  CAS  PubMed  Google Scholar 

  • Sapag A, Wouters J, Lambert C et al (2002) The endoxylanases from family II: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J Biotechnol 95:109–131

    Article  CAS  PubMed  Google Scholar 

  • Sethi A, Scharf ME (2013) Biofuels: fungal, bacterial and insect degraders of lignocellulose. eLS. doi:10.1002/9780470015902.a0020374. John Wiley and Sons

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  PubMed  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shrivastava S, Shukla P, Poddar (2007) In silico studies for evaluating conservation homology among family 11 xylanases from Thermomyces lanuginosus. J Appl Sci Environ Sanit 2:70–76

    Google Scholar 

  • Stalbrand H, Saloheimo A, Vehmaanpera J et al (1995) Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei β-mannanase gene containing a cellulose binding domain. Appl Environ Microbiol 61:1090–1097

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stoll D, Boraston A, Stalbrand H et al (2000) Mannanase Man26A from Cellulomonas fimi has a mannan-binding module. FEMS Lett 183:265–269

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology and application. Crit Rev Biotechnol 22:33–46

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263

    Article  CAS  Google Scholar 

  • Talekar S, Joshi G, Joshi A et al (2013) Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Adv 3:12485

    Article  CAS  Google Scholar 

  • Tang CM, Waterman LD, Smith MH et al (2001) The cel4 gene of Agaricus bisporus encodes a β-mannanase. Appl Environ Microbiol 67:2298–2303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van den Brink J, De Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Article  PubMed  Google Scholar 

  • Van Dyk JS, Sakkab M, Sakkab K et al (2010) Identification of endoglucanases, xylanases, pectinases and mannanases in the multi-enzyme complex of Bacillus licheniformis SVD1. Enz Microb Technol 47:112–118

    Article  Google Scholar 

  • Vikari L, Vehmaanpera J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46:13–24

    Article  Google Scholar 

  • Wen F, Sun J, Zhoa H (2010) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–1260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14:1–5

    Article  Google Scholar 

  • Zhang Q, Yan X, Zhang L et al (2006) Cloning, sequence analysis, and heterologous expression of a β-mannanase gene from Bacillus subtilis Z-2. Mol Biol 40:368–374

    Article  CAS  Google Scholar 

  • Zhengqiang J, Kobayashi A, Ahsan MM et al (2001) Characterization of a thermostable family 10 endoxylanase (XynB) from Thermotoga maritima that cleaves p-nitrophenylbeta-D-xyloside. J Biosci Bioeng 92:423–428

    Article  CAS  PubMed  Google Scholar 

  • Zverlov VV, Schantz N, Schmitt-Kopplin P et al (2005) Two new major subunits in the cellulosome of Clostridium thermocellum: xyloglucanase Xgh74A and endoxylanase Xyn10D. Microbiology 151:3395–3401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Ankita Shrivastava Bhattacharya and Abhishek Bhattacharya are grateful to the National Research Foundation (NRF) of South Africa for their NRF Free Standing Post Doctoral Fellowship awards. Any opinion, findings and conclusions or recommendations expressed in this material are those of the author(s) and therefore the NRF does not accept any liability in regard thereto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett I. Pletschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, A.S., Bhattacharya, A. & Pletschke, B.I. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett 37, 1117–1129 (2015). https://doi.org/10.1007/s10529-015-1779-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1779-3

Keywords

Navigation