Skip to main content

Advertisement

Log in

Cellulase biocatalysis: key influencing factors and mode of action

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Commercial interests have been escalating worldwide on cellulase enzymes, since it has enormous potentiality to process most abundant and eco-friendly celluloses and convert them into the renewable and sustainable energy, chemicals, fuels and materials. However, overcoming the cellulose recalcitrance and understanding accurate cellulase catalytic activities have been remaining as major technological challenges. Here we reviewed cellulose hierarchy as a primary focus for cellulase actions and highlighted open questions related to endo- and exo-type cellulases. Special importance has been paid to critically evaluate research efforts on enzyme–substrate interactions, processivity, synergism and mechanistic paradigm for cellulose depolymerizations. These understandings pave the way for enzyme based cellulose bioprocessing and further gains of fundamental science and improved methods for cellulase engineering. We hope the article is potentially important for the biologists, polymer specialists, industrialists and most of the scientists active in cellulose science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alekozai EM, GhattyVenkataKrishna PK, Uberbacher EC, Crowley MF, Smith JC, Cheng X (2013) Simulation analysis of the cellulase Cel7A carbohydrate binding module on the surface of the cellulose Iβ. Cellulose 21(2):951–971. doi:10.1007/s10570-013-0026-0

    Google Scholar 

  • Asensio JL, Arda A, Canada FJ, Jimenez-Barbero J (2013) Carbohydrate–aromatic interactions. Acc Chem Res 46(4):946–954. doi:10.1021/ar300024d

    CAS  Google Scholar 

  • Atalla R (1999) The individual structures of native celluloses. In: Proceedings of the 10th International Symposium on Wood and Pulping Chemistry, Main Symposium, pp 608–614

  • Atalla R (2011) The diversity of native celluloses. Vimeo, New York

    Google Scholar 

  • Atalla R, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1–19

    CAS  Google Scholar 

  • Barnett CB, Wilkinson KA, Naidoo KJ (2011) Molecular details from computational reaction dynamics for the cellobiohydrolase I glycosylation reaction. J Am Chem Soc 133(48):19474–19482. doi:10.1021/ja206842j

    CAS  Google Scholar 

  • Barr BK, Hsieh YL, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35(2):586–592. doi:10.1021/Bi9520388

    CAS  Google Scholar 

  • Beckham GT, Matthews JF, Bomble YJ, Bu LT, Adney WS, Himmel ME, Nimlos MR, Crowley MF (2010) Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. J Phys Chem B 114(3):1447–1453. doi:10.1021/Jp908810a

    CAS  Google Scholar 

  • Beguin P (1990) Molecular biology of cellulose degradation. Annu Rev Microbiol 44:219–248. doi:10.1146/annurev.mi.44.100190.001251

    CAS  Google Scholar 

  • Beldman G, Voragen AG, Rombouts FM, Searle-van Leeuwen MF, Pilnik W (1987) Adsorption and kinetic behavior of purified endoglucanases and exoglucanases from Trichoderma viride. Biotechnol Bioeng 30(2):251–257. doi:10.1002/bit.260300215

    CAS  Google Scholar 

  • Beltrame PL, Carniti P, Focher B, Marzetti A, Cattaneo M (1982) Cotton cellulose: enzyme adsorption and enzymatic hydrolysis. J Appl Polym Sci 27(9):3493–3502. doi:10.1002/app.1982.070270925

    CAS  Google Scholar 

  • Berghem LE, Pettersson LG (1973) The mechanism of enzymatic cellulose degradation. Purification of a cellulolytic enzyme from Trichoderma viride active on highly ordered cellulose. Eur J Biochem 37(1):21–30

    CAS  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15(3–4):583–620. doi:10.1016/S0734-9750(97)00006-2

    CAS  Google Scholar 

  • Boisset C, Chanzy H, Henrissat B, Lamed R, Shoham Y, Bayer EA (1999) Digestion of crystalline cellulose substrates by the clostridium thermocellum cellulosome: structural and morphological aspects. Biochem J 340(Pt 3):829–835

    CAS  Google Scholar 

  • Boisset C, Fraschini C, Schulein M, Henrissat B, Chanzy H (2000) Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and Its mode of synergy with cellobiohydrolase Cel7A. Appl Environ Microbiol 66(4):1444–1452. doi:10.1128/aem.66.4.1444-1452.2000

    CAS  Google Scholar 

  • Bommarius AS, Katona A, Cheben SE, Patel AS, Ragauskas AJ, Knudson K, Pu Y (2008) Cellulase kinetics as a function of cellulose pretreatment. Metab Eng 10(6):370–381. doi:10.1016/j.ymben.2008.06.008

    CAS  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382(Pt 3):769–781. doi:10.1042/bj20040892

    CAS  Google Scholar 

  • Breyer WA, Matthews BW (2001) A structural basis for processivity. Protein Sci 10(9):1699–1711. doi:10.1110/ps.10301

    CAS  Google Scholar 

  • Bu L, Nimlos MR, Shirts MR, Stahlberg J, Himmel ME, Crowley MF, Beckham GT (2012) Product binding varies dramatically between processive and nonprocessive cellulase enzymes. J Biol Chem 287(29):24807–24813. doi:10.1074/jbc.M112.365510

    CAS  Google Scholar 

  • Carrard G, Linder M (1999) Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei. Eur J Biochem 262(3):637–643

    CAS  Google Scholar 

  • Chang M, Chou TC, Tsao G (1981) Structure, pretreatment and hydrolysis of cellulose. In: Fiechter A (ed) Bioenergy, vol 20. advances in biochemical engineering. Springer, Berlin Heidelberg, pp 15–42. doi:10.1007/3-540-11018-6_2

  • Chanzy H, Henrissat B, Vuong R (1984) Colloidal gold labelling of l,4-β-D-glucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett 172(2):193–197. doi:10.1016/0014-5793(84)81124-2

    CAS  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124

    CAS  Google Scholar 

  • Chipman DM, Sharon N (1969) Mechanism of lysozyme action. Science 165:454–465

    CAS  Google Scholar 

  • Ciolacu D, Kovac J, Kokol V (2010) The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydr Res 345(5):621–630. doi:10.1016/j.carres.2009.12.023

    CAS  Google Scholar 

  • Converse A (1993) Substrate factors limiting enzymatic hydrolysis. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB International, Walligford, pp 93–106

    Google Scholar 

  • Dadi AP, Schall CA, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl biochem biotecnol 137–140(1–12):407–421. http://link.springer.com/article/10.1007%2Fs12010-007-9068-9

  • Dagel DJ, Liu YS, Zhong L, Luo Y, Himmel ME, Xu Q, Zeng Y, Ding SY, Smith S (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115(4):635–641. doi:10.1021/jp109798p

    CAS  Google Scholar 

  • Dale BE, Leong CK, Pham TK, Esquivel VM, Rios I, Latimer VM (1996) Hydrolysis of lignocellulosics at low enzyme levels: application of the AFEX process. Bioresour Technol 56(1):111–116. doi:10.1016/0960-8524(95)00183-2

    CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859. doi:10.1016/S0969-2126(01)00220-9

    CAS  Google Scholar 

  • Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321(Pt 2):557–559

    CAS  Google Scholar 

  • Ding H, Xu F (2004) Productive Cellulase Adsorption on Cellulose. In: Saha BC, Hayashi K (eds) Lignocellulose Biodegradation, vol 889. ACS Symposium Series, vol 889. American Chemical Society, pp 154–169. doi:10.1021/bk-2004-0889.ch009

  • Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles J, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265(5171):524–528

    CAS  Google Scholar 

  • Divne C, Stahlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275(2):309–325. doi:10.1006/jmbi.1997.1437

    CAS  Google Scholar 

  • Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4(2):199–211. doi:10.1093/mp/ssq079

    CAS  Google Scholar 

  • Fägerstam LG, Pettersson LG (1980) The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414: a new type of cellulolytic synergism. FEBS Lett 119(1):97–100

    Google Scholar 

  • Fan LT, Lee Y-H, Beardmore DH (1980) Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 22(1):177–199. doi:10.1002/bit.260220113

    CAS  Google Scholar 

  • Fan LT, Lee YH, Beardmore DR (1981) The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol Bioeng 23(2):419–424. doi:10.1002/bit.260230215

    CAS  Google Scholar 

  • Fengel DW, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195–E1203. doi:10.1073/pnas.1108942108

    Google Scholar 

  • Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP (2002) Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 277(51):49621–49630. doi:10.1074/jbc.M207672200

    CAS  Google Scholar 

  • Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chemistry 7(9):1831–1835

    CAS  Google Scholar 

  • Ganner T, Bubner P, Eibinger M, Mayrhofer C, Plank H, Nidetzky B (2012) Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases. J Biol Chem 287(52):43215–43222. doi:10.1074/jbc.M112.419952

    CAS  Google Scholar 

  • Gao D, Chundawat SP, Krishnan C, Balan V, Dale BE (2010) Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 101(8):2770–2781. doi:10.1016/j.biortech.2009.10.056

    CAS  Google Scholar 

  • Gao SH, You C, Renneckar S, Bao J, Zhang YHP (2014) New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP. Biotechnol Biofuels. doi:10.1186/1754-6834-7-24

    Google Scholar 

  • Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63(1):173–180

    CAS  Google Scholar 

  • Gatenholm P, Davalos R (2008) Invention controls weavers of nanoscale biomaterials. http://www.vtnews.vt.edu/articles/2008/11/2008-693.html

  • Ghose TK, Bisaria VS (1979) Studies on the mechanism of enzymatic hydrolysis of cellulosic substances. Biotechnol Bioeng 21(1):131–146. doi:10.1002/bit.260210110

    CAS  Google Scholar 

  • Gilkes NR, Jervis E, Henrissat B, Tekant B, Miller RC Jr, Warren RA, Kilburn DG (1992) The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem 267(10):6743–6749

    CAS  Google Scholar 

  • Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3(2):155–160

    CAS  Google Scholar 

  • Guo JC, Catchmark JM (2013) Binding specificity and thermodynamics of cellulose-binding modules from Trichoderma reesei Cel7A and Cel6A. Biomacromolecules 14(5):1268–1277. doi:10.1021/bm300810t

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    CAS  Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity–a key predictor of the enzymatic hydrolysis rate. FEBS J 277(6):1571–1582. doi:10.1111/j.1742-4658.2010.07585.x

    CAS  Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2011) Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresour Technol 102(3):2910–2915. doi:10.1016/j.biortech.2010.11.010

    CAS  Google Scholar 

  • Han SJ, Yoo YJ, Kang HS (1995) Characterization of a bifunctional cellulase and its structural gene—the cel gene of Bacillus Sp D04 Has exoglucanase and endoglucanase activity. J Biol Chem 270(43):26012–26019

    CAS  Google Scholar 

  • Harjunpää V, Teleman A, Koivula A, Ruohonen L, Teeri TT, Teleman O, Drakenberg T (1996) Cello-Oligosaccharide hydrolysis by cellobiohydrolase II from Trichoderma reesei. Eur J Biochem 240(3):584–591

    Google Scholar 

  • Hayashi N, Sugiyama J, Okano T, Ishihara Mitsuro (1998) Selective degradation of the cellulose I s component in Cladophora cellulose with Trichoderma viride cellulase. Carbohydr Res 305:109–116

    Google Scholar 

  • Henriksson G, Nutt A, Henriksson H, Pettersson B, Stahlberg J, Johansson G, Pettersson G (1999) Endoglucanase 28 (Cel12A), a new Phanerochaete chrysosporium cellulase. Eur J Biochem 259(1–2):88–95

    CAS  Google Scholar 

  • Henrissat B (1994) Cellulases and their interaction with cellulose. Cellulose 1(3):169–196. doi:10.1007/BF00813506

    CAS  Google Scholar 

  • Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3(8):722–726

    CAS  Google Scholar 

  • Heux L, Dinand E, Vignon MR (1999) Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR. Carbohydr Polym 40(2):115–124. doi:10.1016/s0144-8617(99)00051-x

    CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. doi:10.1126/science.1137016

    CAS  Google Scholar 

  • Hoshino E, Sasaki Y, Okazaki M, Nisizawa K, Kanda T (1993) Mode of action of exo-type and endo-Type cellulases from Irpex-Lacteus in the hydrolysis of cellulose with different crystallinities. J Biochem 114(2):230–235

    CAS  Google Scholar 

  • Hoshino E, Shiroishi M, Amano Y, Nomura M, Kanda T (1997) Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J Ferment Bioeng 84(4):300–306. doi:10.1016/S0922-338X(97)89248-3

    CAS  Google Scholar 

  • Huang AA (1975) Kinetic studies on insoluble cellulose–cellulase system. Biotechnol Bioeng 17(10):1421–1433. doi:10.1002/bit.260171003

    CAS  Google Scholar 

  • Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186–36190. doi:10.1074/jbc.M109.034611

    CAS  Google Scholar 

  • Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333(6047):1279–1282

    CAS  Google Scholar 

  • Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42(8):1002–1013

    CAS  Google Scholar 

  • Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180(7):1709–1714

    CAS  Google Scholar 

  • Jalak J, Kurašin M, Teugjas H, Väljamäe P (2012) Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 287(34):28802–28815

    CAS  Google Scholar 

  • Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426(6967):611–612. doi:10.1038/426611a

    CAS  Google Scholar 

  • Jauris S, Rucknagel KP, Schwarz WH, Kratzsch P, Bronnenmeier K, Staudenbauer WL (1990) Sequence analysis of the Clostridium stercorarium celZ gene encoding a thermoactive cellulase (Avicelase I): identification of catalytic and cellulose-binding domains. Mol Gen Genet 223(2):258–267

    CAS  Google Scholar 

  • Jeoh T, Wilson DB, Walker LP (2002) Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca cellulases Cel5A, Cel6B, and Cel9A. Biotechnol Prog 18(4):760–769. doi:10.1021/bp0200402

    CAS  Google Scholar 

  • Jeon SD, Yu KO, Kim SW, Han SO (2012) The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans. New Biotechnol 29(3):365–371. doi:10.1016/j.nbt.2011.06.008

    CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364. doi:10.1016/j.carbpol.2007.05.040

    CAS  Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59(1):101–106

    CAS  Google Scholar 

  • Jongkees SA, Withers SG (2013) Unusual enzymatic glycoside cleavage mechanisms. Acc Chem Res 47(1):226–235

    Google Scholar 

  • Jung H, Wilson DB, Walker LP (2002) Binding mechanisms for Thermobifida fusca Cel5A, Cel6B, and Cel48A cellulose-binding modules on bacterial microcrystalline cellulose. Biotechnol Bioeng 80(4):380–392. doi:10.1002/bit.10375

    CAS  Google Scholar 

  • Kennedy CJ, Cameron GJ, Šturcová A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14(3):235–246

    CAS  Google Scholar 

  • Kim YJ, Kim D-O, Chun OK, Shin D-H, Jung H, Lee CY, Wilson DB (2005) Phenolic extraction from apple peel by cellulases from Thermobifida fusca. J Agric Food Chem 53(24):9560–9565. doi:10.1021/jf052052j

    CAS  Google Scholar 

  • Kipper K, Valjamae P, Johansson G (2005) Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as ‘burst’ kinetics on fluorescent polymeric model substrates. Biochem J 385(Pt 2):527–535

    CAS  Google Scholar 

  • Klein GL SW (1993) Cellulose. In: Macrae R RR, Saddler MJ (ed) Encyclopedia of food science, food technology and nutrition. Academic Press, USA, pp 758–767

  • Kleman-Leyer K, Agosin E, Conner AH, Kirk TK (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58(4):1266–1270

    CAS  Google Scholar 

  • Kleman-Leyer KM, Gilkes NR, Miller RC Jr, Kirk TK (1994) Changes in the molecular-size distribution of insoluble celluloses by the action of recombinant Cellulomonas fimi cellulases. Biochem J 302(Pt 2):463–469

    CAS  Google Scholar 

  • Kleman-Leyer KM, Siika-Aho M, Teeri TT, Kirk TK (1996) The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Appl Environ Microbiol 62(8):2883–2887

    CAS  Google Scholar 

  • Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Stahlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes. J Mol Biol 272(3):383–397. doi:10.1006/jmbi.1997.1243

    CAS  Google Scholar 

  • Klyosov AA (1990) Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 29(47):10577–10585

    CAS  Google Scholar 

  • Knott BC, Haddad Momeni M, Crowley MF, Mackenzie LF, Gotz AW, Sandgren M, Withers SG, Stahlberg J, Beckham GT (2014) The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. J Am Chem Soc 136(1):321–329. doi:10.1021/ja410291u

    CAS  Google Scholar 

  • Knowles J, Lehtovaara P, Teeri T (1987) Cellulase families and their genes. Trends Biotechnol 5(9):255–261. doi:10.1016/0167-7799(87)90102-8

    CAS  Google Scholar 

  • Koivula A, Reinikainen T, Ruohonen L, Valkeajarvr A, Claeyssens M, Teleman O, Kleyweg GJ, Szardenings M, Rouvinen J, Jones TA, Teeri TT (1996) The active site of Trichoderma reesei cellobiohydrolase II: the role of tyrosine 169. Protein Eng 9(8):691–699

    CAS  Google Scholar 

  • Koshland DE (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28(4):416–436

    CAS  Google Scholar 

  • Kraulis J, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28(18):7241–7257

    CAS  Google Scholar 

  • Kruus K, Wang WK, Ching J, Wu JH (1995) Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol 177(6):1641–1644

    CAS  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696. doi:10.4061/2011/280696

    Google Scholar 

  • Kurasin M, Valjamae P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286(1):169–177. doi:10.1074/jbc.M110.161059

    CAS  Google Scholar 

  • Kyriacou A, Neufeld RJ, Mackenzie CR (1989) Reversibility and competition in the adsorption of Trichoderma reesei cellulase components. Biotechnol Bioeng 33(5):631–637. doi:10.1002/bit.260330517

    CAS  Google Scholar 

  • Landín M, Martínez-Pacheco R, Gómez-Amoza JL, Souto C, Concheiro A, Rowe RC (1993) Effect of country of origin on the properties of microcrystalline cellulose. Int J Pharm 91(2–3):123–131. doi:10.1016/0378-5173(93)90331-9

    Google Scholar 

  • Lee YH, Fan LT (1982) Kinetic studies of enzymatic hydrolysis of insoluble cellulose: analysis of the initial rates. Biotechnol Bioeng 24(11):2383–2406. doi:10.1002/bit.260241107

    CAS  Google Scholar 

  • Lee SB, Shin HS, Ryu DD, Mandels M (1982) Adsorption of cellulase on cellulose: effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol Bioeng 24(10):2137–2153. doi:10.1002/bit.260241003

    CAS  Google Scholar 

  • Lee SB, Kim IH, Ryu DD, Taguchi H (1983) Structural properties of cellulose and cellulase reaction mechanism. Biotechnol Bioeng 25(1):33–51. doi:10.1002/bit.260250105

    CAS  Google Scholar 

  • Lee NE, Lima M, Woodward J (1988) Hydrolysis of cellulose by a mixture of Trichoderma reesei cellobiohydrolase and Aspergillus niger endoglucanase. Biochim Biophys Acta 967(3):437–440

    CAS  Google Scholar 

  • Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489. doi:10.1073/pnas.212651999

    CAS  Google Scholar 

  • Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci 100(2):484–489. doi:10.1073/pnas.212651999

    Google Scholar 

  • Lenz J, Esterbauer H, Sattler W, Schurz J, Wrentschur E (1990) Changes of structure and morphology of regenerated cellulose caused by acid and enzymatic hydrolysis. J Appl Polym Sci 41(5–6):1315–1326. doi:10.1002/app.1990.070410538

    CAS  Google Scholar 

  • Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73(10):3165–3172. doi:10.1128/aem.02960-06

    CAS  Google Scholar 

  • Li L, Mu Q, Zhang B, Yan B (2010) Analytical strategies for detecting nanoparticle-protein interactions. Analyst 135(7):1519–1530. doi:10.1039/c0an00075b

    CAS  Google Scholar 

  • Linder M, Teeri TT (1996) The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proc Natl Acad Sci USA 93(22):12251–12255

    CAS  Google Scholar 

  • Linder M, Teeri TT (1997) The roles and function of cellulose-binding domains. J Biotechnol 57(1–3):15–28. doi:10.1016/S0168-1656(97)00087-4

    CAS  Google Scholar 

  • Linder M, Lindeberg G, Reinikainen T, Teeri TT, Pettersson G (1995a) The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution. FEBS Lett 372(1):96–98. doi:10.1016/0014-5793(95)00961-8

    CAS  Google Scholar 

  • Linder M, Mattinen ML, Kontteli M, Lindeberg G, Stahlberg J, Drakenberg T, Reinikainen T, Pettersson G, Annila A (1995b) Identification of functionally important amino-acids in the cellulose-binding domain of Trichoderma-Reesei cellobiohydrolase-I. Protein Sci 4(6):1056–1064

    CAS  Google Scholar 

  • Liu YS, Baker JO, Zeng Y, Himmel ME, Haas T, Ding SY (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286(13):11195–11201. doi:10.1074/jbc.M110.216556

    CAS  Google Scholar 

  • Lotfi G (2014) Cellulolytic microorganism. Int J Curr Res Chem Pharm Sci 1(2):52–58

    Google Scholar 

  • Lu Q, Dong X, Li L-J, Hu X (2010) Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet–enzyme composite film. Talanta 82(4):1344–1348

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. doi:10.1128/mmbr.66.3.506-577.2002

    CAS  Google Scholar 

  • Mangan D, McCleary B, Liadova A, Ivory R, McCormack N (2014) Quantitative fluorometric assay for the measurement of endo-1, 4-β-glucanase. Carbohydr Res 395:47–51

    CAS  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15(5):804–816. doi:10.1021/Bp9900864

    CAS  Google Scholar 

  • Maurer SA, Bedbrook CN, Radke CJ (2012) Cellulase adsorption and reactivity on a cellulose surface from flow ellipsometry. Ind Eng Chem Res 51(35):11389–11400. doi:10.1021/ie3008538

    CAS  Google Scholar 

  • Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107(10):2394–2403. doi:10.1021/Jp0219395

    CAS  Google Scholar 

  • McCrae SI, Wood TM (1986) The cellulase of Penicillium pinophilum. Synergism between enzyme components in solubilizing cellulose with special reference to the involvement of two immunologically distinct cellobiohydrolases. Biochem J 234(1):93–99

    Google Scholar 

  • Medve J, Stahlberg J, Tjerneld F (1994) Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 44(9):1064–1073. doi:10.1002/bit.260440907

    CAS  Google Scholar 

  • Mertz B, Hill AD, Mulakala C, Reilly PJ (2007) Automated docking to explore subsite binding by glycoside hydrolase family 6 cellobiohydrolases and endoglucanases. Biopolymers 87(4):249–260. doi:10.1002/bip.20831

    CAS  Google Scholar 

  • Mishra C, Rao M (1988) Mode of action and synergism of cellulases from Penicillium funiculosum. Appl Biochem Biotechnol 19(2):139–150

    CAS  Google Scholar 

  • Moloney A, Coughlan MP (1983) Sorption of Talaromyces emersonii cellulase on cellulosic substrates. Biotechnol Bioeng 25(1):271–280. doi:10.1002/bit.260250120

    CAS  Google Scholar 

  • Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298(Pt 3):705–710

    CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249

    CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi:10.1021/ja037055w

    CAS  Google Scholar 

  • Ooshima H, Sakata M, Harano Y (1983) Adsorption of cellulase from Trichoderma viride on cellulose. Biotechnol Bioeng 25(12):3103–3114. doi:10.1002/bit.260251223

    CAS  Google Scholar 

  • Ooshima H, Kurakake M, Kato J, Harano Y (1991) Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis. Appl Biochem Biotechnol 31(3):253–266. doi:10.1007/BF02921752

    CAS  Google Scholar 

  • O’Sullivan A (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207. doi:10.1023/A:1018431705579

    Google Scholar 

  • Palonen H, Tenkanen M, Linder M (1999) Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Appl Environ Microbiol 65(12):5229–5233

    CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.1186/1754-6834-3-10

    Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal Cellulases. Chem Rev 115(3):1308–1448. doi:10.1021/cr500351c

    CAS  Google Scholar 

  • Phillips DC (1967) The hen egg-white lysozyme molecule. Proc Natl Acad Sci USA 57(3):483–495

    Google Scholar 

  • Pilz I, Schwarz E, Kilburn DG, Miller RC Jr, Warren RA, Gilkes NR (1990) The tertiary structure of a bacterial cellulase determined by small-angle X-ray-scattering analysis. Biochem J 271(1):277–280

    CAS  Google Scholar 

  • Pinto R, Moreira S, Mota M, Gama M (2004) Studies on the cellulose-binding domains adsorption to cellulose. Langmuir 20(4):1409–1413

    CAS  Google Scholar 

  • Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, Henrissat B, Record E, Heiss-Blanquet S (2013) Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl Environ Microbiol 79(14):4220–4229. doi:10.1128/AEM.00327-13

    CAS  Google Scholar 

  • Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins Struct Funct Bioinf 14(4):475–482. doi:10.1002/prot.340140408

    CAS  Google Scholar 

  • Reinikainen T, Teleman O, Teeri TT (1995) Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins 22(4):392–403. doi:10.1002/prot.340220409

    CAS  Google Scholar 

  • Reverbel-Leroy C, Pages S, Belaich A, Belaich JP, Tardif C (1997) The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 179(1):46–52

    CAS  Google Scholar 

  • Robson LM, Chambliss GH (1989) Cellulases of bacterial origin. Enzyme Microb Technol 11(10):626–644. doi:10.1016/0141-0229(89)90001-X

    CAS  Google Scholar 

  • Rouvinen J, Bergfors T, Teeri T, Knowles JK, Jones TA (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249(4967):380–386

    CAS  Google Scholar 

  • Rowe RC, McKillop AG, Bray D (1994) The effect of batch and source variation on the crystallinity of microcrystalline cellulose. Int J Pharm 101(1–2):169–172. doi:10.1016/0378-5173(94)90087-6

    CAS  Google Scholar 

  • Ryu DD, Mandels M (1980) Cellulases: biosynthesis and applications. Enzyme Microb Technol 2(2):91–102

    CAS  Google Scholar 

  • Ryu DD, Kim C, Mandels M (1984a) Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol Bioeng 26(5):488–496. doi:10.1002/bit.260260513

    CAS  Google Scholar 

  • Ryu DD, Kim C, Mandels M (1984b) Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol Bioeng 26(5):488–496

    CAS  Google Scholar 

  • Saharay M, Guo H, Smith JC (2010) Catalytic mechanism of cellulose degradation by a cellobiohydrolase, CelS. PloS One 5(10):e12947. doi:10.1371/journal.pone.0012947

    Google Scholar 

  • Sandgren M, Shaw A, Ropp TH, Wu S, Bott R, Cameron AD, Stahlberg J, Mitchinson C, Jones TA (2001) The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 A resolution. J Mol Biol 308(2):295–310. doi:10.1006/jmbi.2001.4583

    CAS  Google Scholar 

  • Sattler W, Esterbauer H, Glatter O, Steiner W (1989) The effect of enzyme concentration on the rate of the hydrolysis of cellulose. Biotechnol Bioeng 33(10):1221–1234. doi:10.1002/bit.260331002

    CAS  Google Scholar 

  • Shang BZ, Chu J-W (2014) Kinetic modeling at single-molecule resolution elucidates the mechanisms of cellulase synergy. ACS Catal. doi:10.1021/cs500126q

    Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70(2):283–295. doi:10.1128/mmbr.00028-05

    CAS  Google Scholar 

  • Sinitsyn AP, Gusakov AV, Vlasenko EY (1991) Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 30(1):43–59. doi:10.1007/BF02922023

    CAS  Google Scholar 

  • Srisodsuk M, Kleman-Leyer K, Keranen S, Kirk TK, Teeri TT (1998) Modes of action on cotton and bacterial cellulose of a homologous endoglucanase–exoglucanase pair from Trichoderma reesei. Eur J Biochem 251(3):885–892

    CAS  Google Scholar 

  • Ståhlberg J, Johansson G, Pettersson G (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol 9:286–290

    Google Scholar 

  • Ståhlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta (BBA) General Subjects 1157(1):107–113

    Google Scholar 

  • Steiner W, Sattler W, Esterbauer H (1988) Adsorption of Trichoderma reesei cellulase on cellulose: experimental data and their analysis by different equations. Biotechnol Bioeng 32(7):853–865. doi:10.1002/bit.260320703

    CAS  Google Scholar 

  • Streamer M, Eriksson KE, Pettersson B (1975) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cullulose. Functional characterization of five endo-1,4-beta-glucanases and one exo-1,4-beta-glucanase. Eur J Biochem 59(2):607–613

    CAS  Google Scholar 

  • Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23(12):3196–3198

    CAS  Google Scholar 

  • Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24(9):2461–2466. doi:10.1021/ma00009a050

    CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175

    CAS  Google Scholar 

  • Sulzenbacher G, Driguez H, Henrissat B, Schulein M, Davies GJ (1996) Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry 35(48):15280–15287. doi:10.1021/bi961946h

    CAS  Google Scholar 

  • Sulzenbacher G, Schulein M, Davies GJ (1997) Structure of the endoglucanase I from Fusarium oxysporum: native, cellobiose, and 3,4-epoxybutyl beta-D-cellobioside-inhibited forms, at 2.3 A resolution. Biochemistry 36(19):5902–5911. doi:10.1021/bi962963+

    CAS  Google Scholar 

  • Taylor CB, Payne CM, Himmel ME, Crowley MF, McCabe C, Beckham GT (2013) Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases. J Phys Chem B 117(17):4924–4933. doi:10.1021/jp401410h

    CAS  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15(5):160–167. doi:10.1016/S0167-7799(97)01032-9

    Google Scholar 

  • Tingaut P, Eyholzer C, Zimmermann T (2011) Functional polymer nanocomposite materials from microfibrillated cellulose. INTECH Open Access Publisher, Croatia

    Google Scholar 

  • Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Eur J Biochem 170(3):575–581. doi:10.1111/j.1432-1033.1988.tb13736.x

    CAS  Google Scholar 

  • Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    CAS  Google Scholar 

  • Tomme P, Kwan E, Gilkes NR, Kilburn DG, Warren RA (1996) Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. J Bacteriol 178(14):4216–4223

    CAS  Google Scholar 

  • Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15(21):5739–5751

    CAS  Google Scholar 

  • Väljamäe P, Sild V, Nutt A, Pettersson G, Johansson G (1999) Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur J Biochem 266(2):327–334

    Google Scholar 

  • Várnai A, Siika-aho M, Viikari L (2013) Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnology for Biofuels 2013, 6:30

  • Várnai A, Mäkelä MR, Djajadi DT, Rahikainen J, Hatakka A, Viikari L (2014) Chapter four—carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. In: Sima S, Geoffrey Michael G (eds) Advances in applied microbiology. Academic Press, Waltham, pp 103–165. doi: 10.1016/B978-0-12-800260-5.00004-8

  • Velleste R, Teugjas H, Väljamäe P (2010) Reducing end-specific fluorescence labeled celluloses for cellulase mode of action. Cellulose 17(1):125–138. doi:10.1007/s10570-009-9356-3

    CAS  Google Scholar 

  • Vocadlo DJ, Davies GJ (2008) Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 12(5):539–555

    CAS  Google Scholar 

  • Vocadlo DJ, Davies GJ, Laine R, Withers SG (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412(6849):835–838

    CAS  Google Scholar 

  • Vuong TV, Wilson DB (2009) Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl Environ Microbiol 75(21):6655–6661. doi:10.1128/AEM.01260-09

    CAS  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004a) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37(23):8548–8555. doi:10.1021/ma0485585

    CAS  Google Scholar 

  • Wada M, Heux L, Sugiyama J (2004b) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromolecules 5(4):1385–1391. doi:10.1021/bm0345357

    CAS  Google Scholar 

  • Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia–cellulose I: new insights into the conversion of cellulose I to cellulose IIII. Macromolecules 39(8):2947–2952. doi:10.1021/ma060228s

    CAS  Google Scholar 

  • Wald S, Wilke CR, Blanch HW (1984) Kinetics of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 26(3):221–230. doi:10.1002/bit.260260305

    CAS  Google Scholar 

  • Wang J, Quirk A, Lipkowski J, Dutcher JR, Hill C, Mark A, Clarke AJ (2012) Real-time observation of the swelling and hydrolysis of a single crystalline cellulose fiber catalyzed by cellulase 7B from Trichoderma reesei. Langmuir 28(25):9664–9672

    CAS  Google Scholar 

  • Weimer PJ, Hackney JM, French AD (1995) Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation. Biotechnol Bioeng 48(2):169–178. doi:10.1002/bit.260480211

    CAS  Google Scholar 

  • White AR, Brown RM (1981) Enzymatic hydrolysis of cellulose: visual characterization of the process. Proc Natl Acad Sci 78(2):1047–1051

    CAS  Google Scholar 

  • Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34(12):938–945

    CAS  Google Scholar 

  • Wood TM (1975) Properties and mode of action of cellulases. Biotechnol Bioeng Symp 5:111–133

    CAS  Google Scholar 

  • Wood TM (1985) Properties of cellulolytic enzyme systems. Biochem Soc Trans 13(2):407–410

    CAS  Google Scholar 

  • Wood TM (1988a) Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol 160:19–25

    CAS  Google Scholar 

  • Wood TM (1988b) Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol 160C:19–25

    Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    CAS  Google Scholar 

  • Wood T, McCrae SI (1972) The purification and properties of the C 1 component of Trichoderma koningii cellulase. Biochem J 128:1183–1192

    CAS  Google Scholar 

  • Wood TM, McCrae SI, Bhat KM (1989) The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem J 260(1):37–43

    CAS  Google Scholar 

  • Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl Catal A 317(1):70–81. doi:10.1016/j.apcata.2006.10.014

    CAS  Google Scholar 

  • Yan S, Li T, Yao L (2011) Mutational effects on the catalytic mechanism of cellobiohydrolase I from Trichoderma reesei. J Phys Chem B 115(17):4982–4989. doi:10.1021/jp200384m

    CAS  Google Scholar 

  • Yang B, Willies DM, Wyman CE (2006) Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnol Bioeng 94(6):1122–1128. doi:10.1002/bit.20942

    CAS  Google Scholar 

  • Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824. doi:10.1002/bit.20282

    CAS  Google Scholar 

  • Zhang J, Rong J, Li W, Lin Z, Zhang X (2011) Preparation and characterization of bacterial cellulose/polyacrylamide hydrogel. Acta Polym Sin 6:602–607

    CAS  Google Scholar 

  • Zhang Y, Lu X-B, Gao C, Lv W-J, Yao J-M (2012) Preparation and characterization of nano crystalline cellulose from bamboo fibers by controlled cellulase hydrolysis. J Fiber Bioeng Inform 5(3):263–271. doi:10.3993/jfbi09201204

    Google Scholar 

  • Zhang Y, Yan S, Yao L (2013) A mechanistic study of Trichoderma reesei Cel7B catalyzed glycosidic bond cleavage. J Phys Chem B 117(29):8714–8722. doi:10.1021/jp403999s

    CAS  Google Scholar 

  • Zheng F, Ding SJ (2013) Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Appl Environ Microbiol 79(3):989–996. doi:10.1128/Aem.02725-12

    CAS  Google Scholar 

  • Zhou WL, Irwin DC, Escovar-Kousen J, Wilson DB (2004) Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochemistry 43(30):9655–9663. doi:10.1021/Bi049394n

    CAS  Google Scholar 

  • Zou J-Y, Kleywegt GJ, Ståhlberg J, Driguez H, Nerinckx W, Claeyssens M, Koivula A, Teeri TT, Jones TA (1999) Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from Trichoderma reesei. Structure 7(9):1035–1045. doi:10.1016/S0969-2126(99)80171-3

    CAS  Google Scholar 

Download references

Acknowledgments

The research is supported by High Impact Research (HIR), University of Malaya, Kula Lumpur, Malaysia—Project No. H-21001-F000032 to Professor Dr. Sharifah Bee Abd Hamid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharifah Bee Abd Hamid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, S.B.A., Islam, M.M. & Das, R. Cellulase biocatalysis: key influencing factors and mode of action. Cellulose 22, 2157–2182 (2015). https://doi.org/10.1007/s10570-015-0672-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0672-5

Keywords

Navigation