Skip to main content

Advertisement

Log in

Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Cellulase (CEL) presently constitutes a major group of industrial enzyme based on its diverse ranges of utilization. Apart from such current and well-established applications—as in cotton processing, paper recycling, detergent formulation, juice extraction, and animal feed additives—their uses in agricultural biotechnology and bioenergy have been exploited. Supplementation of CELs to accelerate decomposition of plant residues in soil results in improved soil fertility. So far, applying CELs/antagonistic cellulolytic fungi to crops has shown to promote plant growth performance, including enhanced seed germination and protective effects. Their actions are believed mainly to trigger plant defense mechanisms and/or to act as biocontrol agents that mediate disease suppression. However, the exact interaction between the enzymes/fungi and plants has not been clearly elucidated. Under mild conditions, removal of plant cell wall polysaccharides by CELs for protoplast preparation results in reduced protoplast damage and increased viability and yields. CELs have recently shown great potential in enzyme aid extraction of bioactive compounds from plant materials before selective extraction through enhancing release of target molecules, especially those associated with the wall matrix. To date, attempts have been made to formulate CEL preparation for cellulosic-based bioethanol production. The high cost of CELs has created a bottleneck, resulting in an uneconomic production process. The utilization of low-cost carbohydrates, strain improvement, and gene manipulations has been alternatively aimed at reducing the cost of CEL production. In this review, we focus on and discuss current knowledge of CELs and their applications in agriculture, biotechnology, and bioenergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BG:

β-Glucosidase

C:

Carbon

CBH:

Cellobiohydrolase

CBM:

Carbohydrate-binding module

CEL:

Cellulase

CHI:

Chitinase

EG:

Endo-1,4-β-D-glucanase

EXP:

Expansin

B1,3 G:

Endo-β-1,3-glucanase

B1,6 G:

Endo-β-1,6-glucanase

HC:

Hemicellulase

K:

Potassium

N:

Nitrogen

NAGLU:

N-Acetylglucoaminidase

P:

Phosphorus

PT:

Pectinase

XET:

Xyloglucan endotransglycosylase

XGH:

Xyloglucan hydrolase

References

  • Aoyagi H (2011) Application of plant protoplasts for the production of useful metabolites. Biochem Eng J 56:1–8

    Article  CAS  Google Scholar 

  • Araki Y, Karita S, Tsuchiya T, Kondo M, Goto M (2010) Family 17 and 28 carbohydrate-binding modules discriminated different cell-wall sites in sweet potato roots. Biosci Biotechnol Biochem 74:802–805

    Article  PubMed  CAS  Google Scholar 

  • Balestrini R, Cosgrove DJ, Bonfante P (2005) Differential location of α-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta 220:889–899

    Article  PubMed  CAS  Google Scholar 

  • Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenerg Res 3:82–92

    Article  Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Ann Rev Microbiol 22:87–108

    Article  CAS  Google Scholar 

  • Barzana E, Rubio D, Santamaria RI, Garcia-Correa O, Garcia F, Ridaura Sanz VE, López-Munguía A (2002) Enzyme-mediated solvent extraction of carotenoids from marigold flower (Tagetes erecta). J Agric Food Chem 50:4491–4496

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237–245

    Article  PubMed  CAS  Google Scholar 

  • Beedy TL, Snapp SS, Akinnifesi FK, Sileshi GW (2010) Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agric Ecosyst Environ 138:139–146

    Article  Google Scholar 

  • Benhamou N, Rey P, Picard K, Tirilly Y (1999) Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology 89:506–517

    Article  PubMed  CAS  Google Scholar 

  • Beukes N, Pletschke BI (2010) Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases. Bioresour Technol 101:4472–4478

    Article  PubMed  CAS  Google Scholar 

  • Beukes N, Pletschke BI (2011) Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse. Bioresour Technol 102:5207–5213

    Article  PubMed  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  PubMed  CAS  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  PubMed  CAS  Google Scholar 

  • Brijwani K, Oberoi HS, Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45:120–128

    Article  CAS  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–339

    Article  PubMed  CAS  Google Scholar 

  • Buchholz K, Seibel J (2008) Industrial carbohydrate biotransformations. Carbohydr Res 343:1966–1979

    Article  PubMed  CAS  Google Scholar 

  • Catalá C, Rose JKC, Bennett AB (2000) Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol 122:527–534

    Article  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Durachko DM (1994) Autolysis and extension of isolated walls from growing cucumber hypocotyls. J Exp Bot 45:1711–1719

    PubMed  CAS  Google Scholar 

  • Cotes AM, Lepoivre P, Semal J (1996) Correlation between hydrolytic enzyme activities measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. Eur J Plant Pathol 102:497–506

    Article  CAS  Google Scholar 

  • Dan S, Marton I, Dekel M, Bravdo B-A, He S, Withers SG, Shoseyov O (2000) Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger β-glucosidase. J Biol Chem 275:4973–4980

    Article  PubMed  CAS  Google Scholar 

  • Ding S-Y, Xu Q, Crowley M, Zeng Y, Nimlos M, Lamed R, Bayer EA, Himmel ME (2008a) A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr Opin Biotechnol 19:218–227

    Article  PubMed  CAS  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008b) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Article  PubMed  CAS  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541–551

    Article  PubMed  CAS  Google Scholar 

  • Fujii K, Sugimura T, Nakatake K (2010) Ascomycetes with cellulolytic, amylolytic, pectinolytic, and mannanolytic activities inhabiting dead beech (Fagus crenata) trees. Folia Microbiol 55:29–34

    Article  CAS  Google Scholar 

  • Garcia-Salas P, Morales-Soto A, Segura-Carretero A, Fernández-Gutiérrez A (2010) Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15:8813–8826

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk LMF, Oliveira RA, da Silva Bon EP (2010) Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 51:72–78

    Article  CAS  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  PubMed  CAS  Google Scholar 

  • Gryndler M, Hršelová H, Klír J, Kubát J, Votruba J (2003) Long-term fertilization affects the abundance of saprotrophic microfungi degrading resistant forms of soil organic matter. Folia Microbiol 48:76–82

    Article  CAS  Google Scholar 

  • Gupta UC, Wu K, Liang S (2008) Micronutrients in soils, crops, and livestock. Earth Sci Front 15:110–125

    Article  CAS  Google Scholar 

  • Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425

    Article  PubMed  CAS  Google Scholar 

  • Han W, He M (2010a) The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresour Technol 101:3724–3731

    Article  PubMed  CAS  Google Scholar 

  • Han W, He M (2010b) Short-term effects of exogenous protease application on soil fertility with rice straw incorporation. Eur J Soil Biol 46:144–150

    Article  CAS  Google Scholar 

  • Haran S, Schickler H, Chet I (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142:2321–2331

    Article  CAS  Google Scholar 

  • Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen J-C, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316

    Article  PubMed  CAS  Google Scholar 

  • Henriksen TM, Breland TA (1999) Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biol Biochem 31:1121–1134

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  PubMed  CAS  Google Scholar 

  • Howard RL, Abotsi E, van Rensburg ELJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    CAS  Google Scholar 

  • Inbar J, Abramsky M, Cohen D, Chet I (1994) Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. Eur J Plant Pathol 100:337–346

    Article  Google Scholar 

  • Ishida BK, Chapman MH (2009) Carotenoid extraction from plants using a novel, environmentally friendly solvent. J Agric Food Chem 57:1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Jeya M, Nguyen N-P-T, Moon H-J, Kim S-H, Lee J-K (2010) Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis. Bioresour Technol 101:8742–8749

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod Biorefin 1:119–134

    Article  Google Scholar 

  • Kapasakalidis PG, Rastall RA, Gordon MH (2009) Effect of a cellulase treatment on extraction of antioxidant phenols from black currant (Ribes nigrum L.) pomace. J Agric Food Chem 57:4342–4351

    Article  PubMed  CAS  Google Scholar 

  • Kasai N, Konishi A, Iwai K, Maeda G (2006) Efficient digestion and structural characteristics of cell walls of coffee beans. J Agric Food Chem 54:6336–6342

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Kim D-O, Chun OK, Shin D-H, Jung H, Lee CY, Wilson DB (2005) Phenolic extraction from apple peel by cellulases from Thermobifida fusca. J Agric Food Chem 53:9560–9565

    Article  PubMed  CAS  Google Scholar 

  • Knocke C, Vogt J (2009) Biofuels—challenges and chances: how biofuel development can benefit from advanced process technology. Eng Life Sci 9:96–99

    Article  CAS  Google Scholar 

  • Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71–88

    Article  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  PubMed  CAS  Google Scholar 

  • Laine MJ, Haapalainen M, Wahlroos T, Kankare K, Nissinen R, Kassuwi S, Metzler MC (2000) The cellulase encoded by the native plasmid of Clavibacter michiganensis ssp. sepedonicus plays a role in virulence and contains an expansin-like domain. Physiol Mol Plant Pathol 57:221–233

    Article  CAS  Google Scholar 

  • Lever M, Ho G, Cord-Ruwisch R (2010) Ethanol from lignocellulose using crude unprocessed cellulase from solid-state fermentation. Bioresour Technol 101:7083–7087

    Article  CAS  Google Scholar 

  • Li L-C, Cosgrove DJ (2001) Grass group I pollen allergens (β-expansins) lack proteinase activity and do not cause wall loosening via proteolysis. Eur J Biochem 268:4217–4226

    Article  PubMed  CAS  Google Scholar 

  • Li X-H, Yang H-J, Roy B, Park EY, Jiang L-J, Wang D, Miao Y-G (2010) Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol Res 165:190–198

    Article  PubMed  CAS  Google Scholar 

  • Lim HT, Lian YJ (2001) Factors influencing protoplast isolation and culture in three Capsicum species. Korean J Plant Tissue Cult 28:141–146

    Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  • Martin S (1997) Enzymatic properties of cellulases from Humicola insolens. J Biotechnol 57:71–81

    Article  Google Scholar 

  • Montalvo-Rodriguez R, Haseltine C, Huess-LaRossa K, Clemente T, Soto J, Staswick P, Blum P (2000) Autohydrolysis of plant polysaccharides using transgenic hyperthermophilic enzymes. Biotechnol Bioeng 70:151–159

    Article  PubMed  CAS  Google Scholar 

  • Moreno CA, Castillo F, González A, Bernal D, Jaimes Y, Chaparro M, González C, Rodriguez F, Restrepo S, Cotes AM (2009) Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol Mol Plant Pathol 74:111–120

    Article  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A Plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Nezomba H, Tauro TP, Mtambanengwe F, Mapfumo P (2010) Indigenous legume fallows (indifallows) as an alternative soil fertility resource in smallholder maize cropping systems. Field Crops Res 115:149–157

    Article  Google Scholar 

  • Nielsen ILF, Chee WSS, Poulsen L, Offord-Cavin E, Rasmussen SE, Frederiksen H, Enslen M, Barron D, Horcajada M-N, Williamson G (2006) Bioavailability is improved by enzymatic modification of the citrus favonoid hesperidin in humans: a randomized, double-blind, crossover trial. J Nutr 136:404–408

    PubMed  CAS  Google Scholar 

  • Novotný Č, Cajthaml T, Svobodová K, šušla M, šašek V (2009) Irpex lacteus, a white-rot fungus with biotechnological potential—review. Folia Microbiol 54:375–390

    Article  Google Scholar 

  • Pason P, Kosugi A, Waeonukul R, Tachaapaikoon C, Ratanakhanokchai K, Arai T, Murata Y, Nakajima J, Mori Y (2010) Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. Appl Microbiol Biotechnol 85:573–580

    Article  PubMed  CAS  Google Scholar 

  • Payasi A, Mishra NN, Chaves ALS, Singh R (2009) Biochemistry of fruit softening: an overview. Physiol Mol Biol Plants 15:103–113

    Article  CAS  Google Scholar 

  • Phitsuwan P, Tachaapaikoon C, Kosugi A, Mori Y, Kyu KL, Ratanakhanokchai K (2010) A cellulolytic and xylanolytic enzyme complex from an alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14. J Microbiol Biotechnol 20:893–903

    Article  PubMed  CAS  Google Scholar 

  • Picard K, Tirilly Y, Benhamou N (2000) Cytological effects of cellulases in the parasitism of Phytophthora parasitica by Pythium oligandrum. Appl Environ Microbiol 66:4305–4314

    Article  PubMed  CAS  Google Scholar 

  • Porto DD, Henriques AT, Fett-Neto AG (2009) Bioactive alkaloids from south American Psychotria and related species. Open Bioact Compd J 2:29–36

    Article  CAS  Google Scholar 

  • Pu Z, Cui ZJ, Su BL (2001) Characterization of biochemistry and degradation of plant-inhibited materials during high-temperature composting. Agric Ecosyst Prot 20:206–209

    Google Scholar 

  • ŘezáČová V, Baldrian P, Hršelová H, Larsen J, Gryndler M (2007) Influence of mineral and organic fertilization on soil fungi, enzyme activities and humic substances in a long-term field experiment. Folia Microbiol 52:415–421

    Article  Google Scholar 

  • Sakka M, Higashi Y, Kimura T, Ratanakhanokchai K, Sakka K (2011) Characterization of Paenibacillus curdlanolyticus B-6 Xyn10D, a xylanase that contains a family 3 carbohydrate-binding module. Appl Environ Microbiol 77:4260–4263

    Article  PubMed  CAS  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13

    Article  Google Scholar 

  • Sharova E (2007) Expansins: proteins involved in cell wall softening during plant growth and morphogenesis. Russ J Plant Physiol 54:713–727

    Article  CAS  Google Scholar 

  • Shindo H, Nishio T (2005) Immobilization and remineralization of N following addition of wheat straw into soil: determination of gross N transformation rates by 15N-ammonium isotope dilution technique. Soil Biol Biochem 37:425–432

    Article  CAS  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  PubMed  CAS  Google Scholar 

  • Singh BK (2010) Exploring microbial diversity for biotechnology: the way forward. Trends Biotechnol 28:111–116

    Article  PubMed  CAS  Google Scholar 

  • Sneh B (1998) Use of non-pathogenic or hypovirulent fungal strains to protect plants against closely related fungal pathogens. Biotechnol Adv 16:1–32

    Article  PubMed  CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64:832–844

    CAS  Google Scholar 

  • Sun T, Tang J, Powers JR (2005) Effect of pectolytic enzyme preparations on the phenolic composition and antioxidant activity of asparagus juice. J Agric Food Chem 53:42–48

    Article  PubMed  CAS  Google Scholar 

  • Tachaapaikoon C, Kosugi A, Pason P, Waeonukul R, Ratanakhanokchai K, Kyu KL, Arai T, Murata Y, Mori Y (2011) Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain. Biodegradation. doi:10.1007/s10532-011-9486-9

  • Takebe I, Otsuki Y, Aoki S (1968) Isolation of tobacco mesophyll cells in intact and active state. Plant Cell Physiol 9:115–124

    Google Scholar 

  • Tamaru Y, Ui S, Murashima K, Kosugi A, Chan H, Doi RH, Liu B (2002) Formation of protoplasts from cultured tobacco cells and Arabidopsis thaliana by the action of cellulosomes and pectate lyase from Clostridium cellulovorans. Appl Environ Microbiol 68:2614–2618

    Article  PubMed  CAS  Google Scholar 

  • Taylor LE II, Dai Z, Decker SR, Brunecky R, Adney WS, Ding S-Y, Himmel ME (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 26:413–424

    Article  PubMed  CAS  Google Scholar 

  • van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492

    Article  PubMed  CAS  Google Scholar 

  • Versari A, Biesenbruch S, Barbanti D, Farnell PJ, Galassi S (1997) Effects of pectolytic enzymes on selected phenolic compounds in strawberry and raspberry juices. Food Res Int 30:811–817

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Waeonukul R, Kyu KL, Sakka K, Ratanakhanokchai K (2008) Effect of carbon sources on the induction of xylanolytic–cellulolytic multienzyme complexes in Paenibacillus curdlanolyticus strain B-6. Biosci Biotechnol Biochem 72:321–328

    Article  PubMed  CAS  Google Scholar 

  • Waeonukul R, Kyu KL, Sakka K, Ratanakhanokchai K (2009a) Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions. J Biosci Bioeng 107:610–614

    Article  PubMed  CAS  Google Scholar 

  • Waeonukul R, Pason P, Kyu KL, Sakka K, Kosugi A, Mori Y, Ratanakhanokchai K (2009b) Cloning, sequencing, and expression of the gene encoding a multidomain endo-β-1,4 xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J Microbiol Biotechnol 19:277–285

    PubMed  CAS  Google Scholar 

  • Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Yang C, Luo J, Lu C, Wu Y, Yuan S (2010) Synergism between cucumber α-expansin, fungal endoglucanase and pectin lyase. J Plant Physiol 167:1204–1210

    Article  PubMed  CAS  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299

    Article  PubMed  CAS  Google Scholar 

  • Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14:259–263

    Article  PubMed  CAS  Google Scholar 

  • Xu RK, Coventry DR (2003) Soil pH changes associated with lupin and wheat plant materials incorporated in a red–brown earth soil. Plant Soil 250:113–119

    Article  CAS  Google Scholar 

  • Xu JM, Tang C, Chen ZL (2006a) Chemical composition controls residue decomposition in soils differing in initial pH. Soil Biol Biochem 38:544–552

    Article  CAS  Google Scholar 

  • Xu JM, Tang C, Chen ZL (2006b) The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol Biochem 38:709–719

    Article  CAS  Google Scholar 

  • Yan F, Schubert S (2000) Soil pH changes after application of plant shoot materials of faba bean and wheat. Plant Soil 220:279–287

    Article  CAS  Google Scholar 

  • Yu L-X, Gray BN, Rutzke CJ, Walker LP, Wilson DB, Hanson MR (2007) Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. J Biotechnol 131:362–369

    Article  PubMed  CAS  Google Scholar 

  • Zhang BS ( 2006) Process for preparing fuel ethanol by using straw fiber materials. CN Patent 1880416

Download references

Acknowledgments

Paripok Phitsuwan was supported by a grant from the Royal Golden Jubilee Ph.D. Program of the Thai Research Fund. We thank the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khanok Ratanakhanokchai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phitsuwan, P., Laohakunjit, N., Kerdchoechuen, O. et al. Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiol 58, 163–176 (2013). https://doi.org/10.1007/s12223-012-0184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-012-0184-8

Keywords

Navigation