Skip to main content

Advertisement

Log in

Heterogeneous Expression and Functional Characterization of Cellulose-Degrading Enzymes from Aspergillus niger for Enzymatic Hydrolysis of Alkali Pretreated Bamboo Biomass

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis of cellulosic biomass has caught much attention because of modest reaction conditions and environment friendly conditions. To reduce the cost and to achieve good quantity of cellulases, a heterologous expression system is highly favored. In this study, cellulose-degrading enzymes, GH3 family β-glucosidase (BGL), GH7 family-related cellobiohydrolases (CBHs), and endoglucanase (EG) from a newly isolated Aspergillus niger BE-2 are highly expressed in Pichia pastoris GS115. The strain produced EG, CBHs, and BGL enzymatic concentration of 0.56, 0.11, and 22 IU/mL, respectively. Mode of actions of the recombinant enzymes for substrate specificity and end product analysis are verified and found specific for cellulose degradation. Bamboo biomass saccharification with A. niger cellulase released a high level of fermentable sugars. Hydrolysis parameters are optimized to obtain reducing sugars level of 3.18 g/L. To obtain reducing sugars from a cellulosic biomass, A. niger could be a good candidate for enzymes resource of cellulase to produce reducing sugars from a cellulosic biomass. This study also facilitates the development of highly efficient enzyme cocktails for the bioconversion of lignocellulosic biomass into monosaccharides and oligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  2. Esterbauer, H., Steiner, W., Labudova, I., Hermann, A., & Hayn, M. (1991). Production of Trichoderma cellulase in laboratory and pilot plant. Bioresource Technology, 36, 67–76.

    Article  Google Scholar 

  3. Bagga, P. S., Sandhu, D. K., & Sharma, S. (1990). Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans. Journal of Applied Bacteriology, 68, 61–68.

    Article  CAS  Google Scholar 

  4. Vidmar, S., Turk, V., & Kregar, I. (1984). Cellulolytic complex of Aspergillus niger under conditions for citric acid production. Isolation and characterization of two b-(1 → 4)-glucan hydrolases. Applied Microbiol Biotechnology, 20, 326–330.

    Article  CAS  Google Scholar 

  5. Gadgil, N. J., Daginawala, H. F., Chakarabarti, T., & Khanna, P. (1995). Enhanced cellulase production by a mutant of Trichoderma reesei. Enzyme Microbial Technology, 17, 942–946.

    Article  CAS  Google Scholar 

  6. Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2012). Role and significance of β-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 127, 500–507.

    Article  Google Scholar 

  7. Mooney, C. A., Mansfield, S. D., Touhy, M. G., & Saddler, J. N. (1998). The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresource Technology, 64, 113–119.

    Article  CAS  Google Scholar 

  8. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  9. Wilkins, M. R., Widmer, W. W., Grohmann, K., & Cameron, R. G. (2007). Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresource Technology, 98, 1596–1601.

    Article  CAS  Google Scholar 

  10. Persson, I., Tjerneld, F., & Hahn-Hagerdal, B. B. (1991). Fungal cellulolytic enzyme production: A review. Process Biochemistry, 26, 65–74.

    Article  CAS  Google Scholar 

  11. Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnology Bioengineering, 36, 275–287.

    Article  CAS  Google Scholar 

  12. Wright, J. D., Power, A. J., & Douglas, L. J. (1986). Design and parameter evaluation of an enzymatic hydrolysis process (separation hydrolysis and fermentation). Biotechnology and Bioengineering, 17, 285–302.

    CAS  Google Scholar 

  13. Ferreira, S., Duarte, A. P., Ribeiro, M. H. L., Queiroz, J. A., & Domingues, F. C. (2009). Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisusstriatus for bioethanol production. Biochemical Engineering, 45, 192–200.

    Article  CAS  Google Scholar 

  14. Cardona, C. A., & Sanchez, C. J. (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 98, 2415–2457.

    Article  CAS  Google Scholar 

  15. He, M. X., Wang, J. L., Qin, H., Shui, Z. X., Zhu, Q. L., Wu, B., et al. (2014). Bamboo: A new source of carbohydrate for biorefinery. Carbohydrate Polymers, 111, 645–654.

    Article  CAS  Google Scholar 

  16. Amada, S., Munekata, T., Nagase, Y., Ichikawa, Y., Kirigai, A., & Zhifei, Y. (1996). Themechanical structures of bamboos in viewpoint of functionally gradient and composite materials. Journal of Composite Materials, 30, 800–819. doi:10.1177/002199839603000703.

    Article  CAS  Google Scholar 

  17. Choy, K. K. H., Barford, J. P., & McKay, G. (2005). Production of activated carbon from bamboo scaffolding waste process design, evaluation and sensitivity analysis. Chemical Engineering, 109, 147–165. doi:10.1016/j.cej.2005.02.030.

    Article  CAS  Google Scholar 

  18. Yang, H., Lirong, T., Qilin, L., Siqun, W., Xuerong, C., & Biao, H. (2014). Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose, 21, 1611–1618. doi:10.1007/s10570-014-0236-0.

    Article  Google Scholar 

  19. Balatinecz, J. J., & Kretschmann, D. E. (2001). Properties and utilization of poplar wood (pp. 277–291). Ottawa, ON: NRC Research Press, National Research Council of Canada.

    Google Scholar 

  20. Juturu, V., & Wu, J. C. (2012). Microbial xylanases: Engineering, production and industrial applications. Biotechnology Advances, 30, 1219–1227.

    Article  CAS  Google Scholar 

  21. Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  22. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of micorgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  23. Somogyi, M. (1951). Notes on sugar determination. Journal of Biological Chemistry, 195, 19–23.

    Google Scholar 

  24. Riou, C., Salmon, J. M., Vallier, M. J., Gunata, Z., & Barre, P. (1998). Purification, characterization and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Applied Environmental Microbiology, 64, 3607–3614.

    CAS  Google Scholar 

  25. Miller, G. L. (1959). Use of dinitrosalycilic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–430.

    Article  CAS  Google Scholar 

  26. Li, H., Long, C., Zhou, J., Liu, J., Wu, X., & Long, M. (2013). Rapid analysis of mono-saccharides and oligo-saccharides in hydrolysates of lignocellulosic biomass by HPLC. Biotechnology Letter, 35, 1405–1409.

    Article  CAS  Google Scholar 

  27. Yamashita, Y., Shono, M., Sasaki, C., & Nakamura, Y. (2010). Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydrate Polymers, 79, 914–920.

    Article  CAS  Google Scholar 

  28. Goering, H. K., & Van Soest, P. J. (1970). Forage fibre analysis. Agriculture handbook (pp. 387–598). Washington, DC: Agricultural Research Services, United States Department of Agriculture.

    Google Scholar 

  29. Jiwei, Z., Yaohua, Z., Xuena, Z., & Tianhong, W. (2010). Development of the cellulolytic fungus Trichoderma reesei strain with enhanced β-glucosidase and filter paper activity using strong artificial cellobiohydrolase-1 promoter. Bioresource Technology, 101, 9815–9818. doi:10.1016/j.biortech.2010.07.078.

    Article  Google Scholar 

  30. Marimuthu, J., Ngoc, P. N., Hee, J. M., Sang, K., & Jung, K. L. (2010). Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis. Bioresource Technology, 101, 8742–8749.

    Article  Google Scholar 

  31. Guoqing, L., Changsheng, C., Song, F., & Linguo, Z. (2012). Cloning of a cellobiohydrolase gene (cbh1) from Aspergillus niger and heterogenous expression in Pichia pastoris. Advanced Materials Research, 353, 2443–2447.

    Google Scholar 

  32. Teeri, T., Lehtovaara, P., Kauppinen, S., Salovuori, I., & Knowles, J. (1987). Homologous domains in Trichoderma reesei cellulolytic enzymes: Gene sequence and expression of cellobiohydrolase II. Gene, 51, 43–52.

    Article  CAS  Google Scholar 

  33. Koch, A., Weigel, C. T. O., & Schulz, G. (1993). Cloning sequencing and heterologous expression of a cellulase 2 encoding cDNA from P. janthinellum. Gene, 124, 57–65.

    Article  CAS  Google Scholar 

  34. Covert, S. F., Vanden, W. A., & Cullen, D. (1992). Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Applied Environmental Microbiology, 58, 2168–2175.

    CAS  Google Scholar 

  35. Takada, G., Kawaguchi, T., Sumitani, J., & Arai, M. (1998). Expression of Aspergillus aculeatus No. F-50 cellobiohydrolase I (cbhI) and beta-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae. Bioscience, Biotechnology, and Biochemistry, 3, 1615–1618.

    Article  Google Scholar 

  36. Hamada, N., Fuse, N., Shimosaka, M., Kodaira, R., Amano, Y., Kanda, T., & Okazaki, M. (1999). Cloning and characterization of a new exo-cellulase gene, cel3, in Irpex lacteus. FEMS Microbiology Letters, 172, 231–237.

    Article  CAS  Google Scholar 

  37. Hu, J., Arantes, V., Pribowo, A., & Saddler, J. N. (2013). The synergistic action of accessory enzymes enhances the hydrolytic potential of a ‘cellulase mixture’ but is highly substrate specific. Biotechnology Biofuels, 6, 112.

    Article  CAS  Google Scholar 

  38. Zhang, J., Siika-aho, M., Puranen, T., Tang, M., Tenkanen, M., & Viikari, L. (2011). Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnology Biofuels, 4, 12.

    Article  CAS  Google Scholar 

  39. Sewalt, V. J. H., Beauchemin, K. A., Rode, L. M., Acharya, S., & Baron, V. S. (1997). Lignin impact on fiber degradation. IV. Enzymatic saccharification and in vitro digestibility of alfalfa and grasses following selective solvent delignification. Bioresource Technology, 61, 199–206.

    Article  CAS  Google Scholar 

  40. Kim, T. H., & Lee, Y. Y. (2005). Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource Technology, 96, 2007–2013.

    Article  CAS  Google Scholar 

  41. Xu, Z., Wang, Q. H., Jiang, Z. H., Yang, X. X., & Ji, Y. Z. (2007). Enzymatic hydrolysis of pretreated soybean straw. Biomass and Bioenergy, 31, 162–167.

    Article  CAS  Google Scholar 

  42. Zhang, Q., & Cai, W. (2008). Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass and Bioenergy, 32, 1130–1135.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31170067, 21303142), the research fund of Fujian Provincial Natural Science Foundation (Grant No: 2012J05029), and the National Basic Research Program of China (973 Program, Grant No: 2010CB732201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Liu or Minnan Long.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 628 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Ting, Z., Li, H. et al. Heterogeneous Expression and Functional Characterization of Cellulose-Degrading Enzymes from Aspergillus niger for Enzymatic Hydrolysis of Alkali Pretreated Bamboo Biomass. Mol Biotechnol 57, 859–867 (2015). https://doi.org/10.1007/s12033-015-9878-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9878-x

Keywords

Navigation