Skip to main content

Advertisement

Log in

Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The present study aimed to demonstrate the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. NBRI 13E was characterized for abiotic stress tolerance and plant growth-promoting (PGP) attributes under normal and salt stress conditions. Phylogenetic comparison of NBRI 13E was carried out with known species of the same genera based on 16S rRNA gene. Plant growth promotion and rhizosphere colonization studies were determined under greenhouse conditions using maize, tomato, and okra. Field experiment was also performed to assess the ability of NBRI 13E inoculation for improving growth and yield of maize crop in alkaline soil. NBRI 13E demonstrated abiotic stress tolerance and different PGP attributes under in vitro conditions. Phylogenetic and differential physiological analysis revealed considerable differences in NBRI 13E as compared with the reported species for Jeotgalicoccus genus. NBRI 13E colonizes in the rhizosphere of the tested crops, enhances plant growth, and ameliorates salt stress in a greenhouse experiment. Modulation in defense enzymes, chlorophyll, proline, and soluble sugar content in NBRI 13E-inoculated plants leads to mitigate the deleterious effect of salt stress. Furthermore, field evaluation of NBRI 13E inoculation using maize was carried out with recommended 50 and 100% chemical fertilizer controls, which resulted in significant enhancement of all vegetative parameters and total yield as compared to respective controls. Jeotgalicoccus huakuii NBRI 13E is reported for the first time for its ability to develop a bioinoculant formulation for stress amelioration and improved crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Albaladejo I, Meco V, Plasencia F, Flores FB, Bolarin MC, Egea I (2017) Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress: from leaf anatomical adaptations to molecular responses. Environ Exper Bot 135:1–12

    Article  CAS  Google Scholar 

  • Alves M, Nogueira C, Ana AM, Chung AP, Morais PV, da Costa MS (2008) Nosocomiicoccus ampullae gen. nov., sp. nov., isolated from the surface of bottles of saline solution used in wound cleansing. Int J Syst Evol Microbiol 58:2939–2944

    Article  CAS  PubMed  Google Scholar 

  • Ambardar S, Vakhlu J (2013) Plant growth promoting bacteria from Crocus sativus rhizosphere. World J Microbiol Biotechnol 29:2271–2279

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • AVRDC (2006) Vegetables matter. In: AVRDC – The World Vegetable Center. Shanhua, Taiwan

    Google Scholar 

  • Balsanelli E, de Baura VA, Pedrosa FD, de Souza EM, Monteiro RA (2014) Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae. PLoS One 9:e110392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387

    Article  CAS  PubMed  Google Scholar 

  • Bistgani ZE, Siadat SA, Bakhshandeh A, Pirbalouti AG, Hashemi M (2017) Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J. https://doi.org/10.1016/j.cj.2017.04.00

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bromham L, Saslis-Lagoudakis CH, Bennett TH, Flowers TJ (2013) Soil alkalinity and salt tolerance: adapting to multiple stresses. Biol Lett 9:20130642

    Article  PubMed  PubMed Central  Google Scholar 

  • Bui EN (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25

    Article  Google Scholar 

  • Bui EN, Thornhill A, Miller JT (2014) Salt- and alkaline-tolerance are linked in Acacia. Biol Lett 10:20140278

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29:789–803

    Article  CAS  PubMed  Google Scholar 

  • Chauhan PS, Nautiyal CS (2010) The purB gene controls rhizosphere colonization by Pantoea agglomerans. Lett Appl Microbiol 50:205–210

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Xing J, Lan H (2012) Comparative effects of neutral salt and alkaline salt stress on seed germination, early seedling growth and physiological response of a halophyte species Chenopodium glaucum. Afr J Biotechnol 11:9572–9581

    CAS  Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35:276–300

    Article  CAS  Google Scholar 

  • Curá JA, Franz DR, Filosofía JE, Balestrasse KB, Burgueño LE (2017) Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms 5:1–16

    Google Scholar 

  • Dixit R, Agrawal L, Gupta S, Kumar M, Yadav S, Chauhan PS, Nautiyal CS (2016) Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488. Plant Signal Behav 11:e1113363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fan P, Chen D, He Y, Zhou Q, Tian Y, Gao L (2016) Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline–alkaline lands. Int J Phytoremediation 18:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35:461–481

    Article  CAS  Google Scholar 

  • Forni C, Duca D, Glick BR (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410:335–356

    Article  CAS  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt KE, MacNeill GJ, Gerwing PD, Greenberg BM (2017) Phytoremediation of salt-impacted soils and use of plant growth-promoting rhizobacteria (PGPR) to enhance phytoremediation. In: Ansari AA (ed) Phytoremediation. Springer International Publishing, pp 19–51

  • Giuffrida F, Scuderi D, Giurato R, Leonardi C (2013) Physiological response of broccoli and cauliflower as affected by NaCl salinity. Acta Hortic 1005:435–441

    Article  Google Scholar 

  • Gontia-Mishra I, Sapre S, Kachare S, Tiwari S (2017) Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant Soil 414:213–227

    Article  CAS  Google Scholar 

  • Guo XQ, Li R, Zheng LQ, Lin DQ, Sun JQ, Li SP, Li WJ, Jiang JD (2010) Jeotgalicoccus huakuii sp. nov., a halotolerant bacterium isolated from seaside soil. Int J Syst Evol Microbiol 60:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Kaushal R, Spehia RS, Pathania SS, Sharma V (2017) Productivity of capsicum influenced by conjoint application of isolated indigenous PGPR and chemical fertilizers. J Plant Nutr 40:921–927

    Article  CAS  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55:184–185

    Article  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Chapter  Google Scholar 

  • Kamjumphol W, Chareonsudjai S, Chareonsudjai P, Wongratanacheewin S, Taweechaisupapong S (2013) Environmental factors affecting Burkholderia pseudomallei biofilm formation. Southeast Asian J Trop Med Public Health 44:72–81

    PubMed  Google Scholar 

  • Kang S, Khan AL, Waqas M, You Y, Kim J, Kim J, Hamayun M, Lee I (2014) Plant growth promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HQ, Jiang XW (2017) Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physiol 64:235–241

    Article  CAS  Google Scholar 

  • Li P, Wu J, Qian H (2016) Regulation of secondary soil salinization in semi-arid regions: a simulation research in the Nanshantaizi area along the Silk Road, northwest China. Environ Earth Sci 75:698

    Article  CAS  Google Scholar 

  • Li H, Lei P, Panga X, Li S, Xu H, Xu Z, Feng X (2017) Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Appl Soil Ecol 119:26–34

    Article  CAS  Google Scholar 

  • Liu WY, Jiang LL, Guo CJ, Yang SS (2011) Jeotgalicoccus halophilus sp. nov., isolated from salt lakes. Int J Syst Evol Microbiol 61:1720–1724

    Article  CAS  PubMed  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30

    Article  Google Scholar 

  • Mendis HC, Thomas VP, Schwientek P, Salamzade R, Chien J-T, Waidyarathne P, Kloepper J, Fuente LDL (2018) Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions. PLoS One 13:e0193119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Chauhan PS, Chaudhry V, Tripathi M, Nautiyal CS (2011) Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. Antonie Van Leeuwenhoek 100:405–413

    Article  PubMed  Google Scholar 

  • Mishra S, Mishra A, Chauhan PS, Mishra SK, Kumari M, Niranjan A, Nautiyal CS (2012) Pseudomonas putida NBRIC19 dihydrolipoamide succinyltransferase (SucB) gene controls degradation of toxic allelochemicals produced by Parthenium hysterophorus. J Appl Microbiol 112:793–808

    Article  CAS  PubMed  Google Scholar 

  • Mishra SK, Khan MH, Misra S, Kant VK, Khare P, Srivastava S, Chauhan PS (2017) Characterization of Pseudomonas spp. and Ochrobactrum sp. isolated from volcanic soil. Antonie Van Leeuwenhoek 110:253–270

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Dixit VK, Khan MH, Mishra SK, Dviwedi G, Yadav S, Lehri A, Chauhan PS (2017) Exploitation of agro-climatic environment for selection of 1aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt-tolerant indigenous plant growth promoting rhizobacteria. Microbiol Res 205:25–34

    Article  CAS  PubMed  Google Scholar 

  • Mokashe N, Chaudhari A, Patil U (2015) Optimal production and characterization of alkaline protease from newly isolated halotolerant Jeotgalicoccus sp. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2015.01.003

  • Mukasheva T, Berzhanova R, Ignatova L, Omirbekova A, Brazhnikova Y, Sydykbekova R, Shigaeva M (2016) Bacterial endophytes of Trans-Ili Alatau region’s plants as promising components of a microbial preparation for agricultural use. Acta Biochim Pol 63:321–328

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nautiyal CS (1997) A method for selection and characterization of rhizosphere-competent bacteria of chickpea. Curr Microbiol 34:12–17

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nazir Q, Akhtar MJ, Imran M, Arshad M, Hussain A, Mahmood S, Hussain S (2017) Simultaneous use of plant growth promoting rhizobacterium and nitrogenous fertilizers may help in promoting growth, yield, and nutritional quality of okra. J Plant Nutr 40:1339–1350

    Article  CAS  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Patra HK, Mishra M (1979) Pyrophosphatase, peroxidase and polyphenol oxidase activities during leaf development and senescence. Plant Physiol 63:318–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase containing plant growth promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Philips J, Rabaey K, Lovley DR, Vargas M (2017) Biofilm formation by Clostridium ljungdahlii is induced by sodium chloride stress: experimental evaluation and transcriptome analysis. PLoS One 12:e0170406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Holden PA (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72:1988–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pumirat P, Vanaporn M, Boonyuen U, Indrawattana N, Rungruengkitkun A, Chantratita N (2017) Effects of sodium chloride on heat resistance, oxidative susceptibility, motility, biofilm and plaque formation of Burkholderia pseudomallei. Microbiology Open 6:e493

    Article  CAS  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Aust J Soil Res 37:613–620

    Google Scholar 

  • Rubio MB, Hermosa R, Vicente R, Gómez-Acosta FA, Morcuende R, Monte E, Bettiol W (2017) The combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Front Plant Sci 8:294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SZ (2015) The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology 84:512–519

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Minakshi G, Gopal R, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAPP45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2017) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol. https://doi.org/10.1016/j.resmic.2017.08.005

  • Sharma A, Singh P, Kumar S, Kashyap PL, Srivastava AK, Chakdar H, Singh RN, Kaushik R, Saxena AK, Sharma AK (2015) Deciphering diversity of salt-tolerant bacilli from saline soils of eastern Indo-Gangetic plains of India. Geomicrobiol J 32:170–180

    Article  CAS  Google Scholar 

  • Sheng GP, Yu HQ, Yue Z (2006) Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila. Int Biodeter Biodegr 58:89–93

    Article  CAS  Google Scholar 

  • Siddikee MA, Sundaram S, Chandrasekaran M, Kim K, Selvakumar G, Sa T (2015) Halotolerant bacteria with ACC deaminase activity alleviate salt stress effect in canola seed germination. J Korean Soc Appl Biol Chem 58:237–241

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS One 11:e0155026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soleimani R, Alikhani HA, Towfighi H, Khavazi K, Pourbabaee AA (2017) Isolated bacteria from saline-sodic soils alter the response of wheat under high adsorbed sodium and salt stress. Int J Environ Sci Technol 14:143–150

    Article  CAS  Google Scholar 

  • Sood G, Kaushal R, Chauhan A, Gupta S (2018) Effect of conjoint application of indigenous PGPR and chemical fertilizers on productivity of maize (Zea mays L.) under mid hills of Himachal Pradesh. J Plant Nutr 41:297–303

    Article  CAS  Google Scholar 

  • Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Nautiyal CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56:453–457

    Article  CAS  PubMed  Google Scholar 

  • Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya AMZ, Geissler-Plaum R, Schnell S (2015) Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Appl Soil Ecol 95:23–30

    Article  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Titus S, Gasnkar N, Srivastava KB, Karande AA (1995) Exopolymer production by a fouling marine bacterium Pseudomonas alcaligenes. Indian J Mar Sci 24:45–48

    CAS  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Ullah S, Bano A (2015) Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 61:307–313

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • Vaishnav A, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated amelioration of crops under salt stress. In: Choudhary DK (ed) Plant-microbe interaction: an approach to sustainable agriculture. Springer Nature Pte Ltd., Singapore, pp 205–226

    Chapter  Google Scholar 

  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  CAS  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SKZ (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic bacilli from the cold dessert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yasmin H, Nosheen A, Naz R, Bano A, Keyani R (2017) L-tryptophan-assisted PGPR-mediated induction of drought tolerance in maize (Zea mays L.). J Plant Interact 12:567–578

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Director, CSIR-National Botanical Research Institute for providing facilities and support during the study.

Funding

The authors acknowledge the financial assistance from the CSIR Network project MLP022 and In-house project OLP105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Singh Chauhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, S., Dixit, V.K., Mishra, S.K. et al. Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. Ann Microbiol 69, 419–434 (2019). https://doi.org/10.1007/s13213-018-1428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1428-x

Keywords

Navigation