Skip to main content
Log in

Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Brahmi (Bacopa monnieri), an integral component of Indian Ayurvedic medicine system, is facing a threat of extinction owing to the depletion of its natural populations. The present study investigates the prospective of exploitation of halotolerant plant growth promoting rhizobacteria (PGPR) in utilising the salt stressed soils for cultivation of B. monnieri. The effects of two salt tolerant PGPR, Bacillus pumilus (STR2) and Exiguobacterium oxidotolerans (STR36) on the growth and content of bacoside-A, an important pharmaceutical compound in B. monnieri, were investigated under primary and secondary salinity conditions. The herb yields of un-inoculated plants decreased by 48 % under secondary salinization and 60 % under primary salinization than the non salinised plants. Among the rhizobacteria treated plants, E. oxidotolerans recorded 109 and 138 %, higher herb yield than non-inoculated plants subjected to primary and secondary salinity respectively. E. oxidotolerans inoculated plants recorded 36 and 76 % higher bacoside-A content under primary and secondary salinity respectively. Higher levels of proline content and considerably lower levels of lipid peroxidation were noticed when the plants were inoculated with PGPR under all salinity regimes. From the results of this investigation, it can be concluded that, the treatments with salt tolerant PGPR can be a useful strategy in the enhancement of biomass yield and saponin contents in B. monnieri, as besides being an eco-friendly approach; it can also be instrumental in cultivation of B. monnieri in salt stressed environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Article  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RD, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhandari P, Kumar N, Gupta AP, Singh B, Kaul VK (2006) Micro-LC determination of swertiamarin in Swertia species and bacoside-A in Bacopa monnieri. Chromatographia 64:599–602

    Article  CAS  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot. doi:10.1093/jxb/erp140

  • Dastager SG, Kumaran DC, Pandey A (2010) Characterization of plant growth-promoting rhizobacterium Exiguobacterium NII-0906 for its growth promotion of cowpea (Vigna unguiculata). Biologia 65(2):197–203

    Article  CAS  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell Environ 32:1682–1694

    Article  CAS  Google Scholar 

  • Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    CAS  Google Scholar 

  • FAO (2008) FAO land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush

  • Galli U, Schuepp H, Brunold G (1996) Thiols in cadmium and copper treated maize (Zea mays L.). Planta 198:139–143

    Article  CAS  Google Scholar 

  • Gupta AP, Mathur S, Gupta MM, Kumar S (1998) Effect of the method of drying on the bacoside-A content of the harvested Bacopa monnieri shoots using a high performance thin layer chromatography method. J Med Arom Plant 20:1052–1055

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1993) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Janani P, Sivakumari K, Parthasarathy C (2009) Hepatoprotective activity of bacoside-A against N-nitrosodiethylamine-induced liver toxicity in adult rats. Cell Biol Toxicol 25:425–434

    Article  CAS  Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81–89

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Roldán A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    Article  CAS  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Manaa A, Ahmed HB, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M (2011) Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot 62(8):2797–2813

    Article  CAS  Google Scholar 

  • Mathew J, Paul J, Nandhu MS, Paulose CS (2010) Bacopa monnieri and bacoside-A for ameliorating epilepsy associated behavioral deficits. Fitoterapia 81:315–322. doi:10.1016/j.fitote.2009.11.005

    Article  Google Scholar 

  • Measures JC (1975) Role of amino acids in osmoregulation of nonhalophilic bacteria. Nature 257:398–400

    Article  CAS  Google Scholar 

  • Mukherjee DG, Dey CD (1966) Clinical trial on Brahmi. Int J Exp Med Sci 10:5–11

    CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • National Medicinal Plants Board (2004) Thirty two prioritized medicinal plants. National Informatics Centre, Ministry of Health and Family Welfare, Department of Ayush, Government of India. http://www.nmpb.nic.in/sarpgandha.htm

  • Phrompittayarat W, Jetiyanon K, Wittaya-areekul S, Putalun W, Tanaka H, Khan I, Ingkaninan K (2011) Influence of seasons, different plant parts, and plant growth stages on saponin quantity and distribution in Bacopa monnieri. Songklanakarin J Sci Technol 33(2):193–199

    CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorous in soil in connection with the vital activity of some microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Piromyou P, Buranabanyat B, Tantasawat P, Tittabutr P, Boonkerd N, Teaumroong N (2011) Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. Eur J Soil Biol 47:44–54

    Article  CAS  Google Scholar 

  • Russo A, Borrelli F (2005) Bacopa monnieri, a reputed nootropic plant: an overview. Phytomedicine 12:305–317. doi:10.1016/j.phymed.2003.12.008

    Article  CAS  Google Scholar 

  • Satheesan J, Narayanan AK, Sakunthala M (2012) Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22:195–202

    Article  CAS  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS (2010) Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Ind J Microbiol 50(1):50–56

    Article  CAS  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Florencia M, Papa D, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85(2):371–381

    Article  CAS  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  CAS  Google Scholar 

  • Sharath R, Harish BG, Krishna V, Sathyanarayana BN, Kumara Swamy HM (2010) Wound healing and protease inhibition activity of bacoside-a, isolated from Bacopa monnieri wettest. Phytother Res 24:1217–1222

    CAS  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  Google Scholar 

  • Sumathi T, Nathiya VC, Sakthikumar M (2011) Protective effect of bacoside-a against morphine-induced oxidative stress in rats. Indian J Pharm Sci 73(4):409–415

    CAS  Google Scholar 

  • Szakiel A, Pączkowski C, Henry M (2011) Influence of environmental abiotic factors on the content of saponins in plants. Phytochem Rev 10:471–491

    Article  CAS  Google Scholar 

  • Tiwari V, Tiwari KN, Singh BD (2001) Comparative studies of cytokinins on in vitro propagation of Bacopa monniera. Plant Cell, Tissue Organ Cult 66:9–16

    Article  CAS  Google Scholar 

  • Venkateswarlu B, Desai S, Prasad YG (2008) Agriculturally important microorganisms for stressed ecosystems: challenges in technology development and application. In: Khachatourians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms, vol 1. Academic World, Bhopal, pp 225–246

    Google Scholar 

  • Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R, Comte G (2011) Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol 189:494–506

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  CAS  Google Scholar 

  • Yumoto I, Narisawa MH, Hirota K, Shingyo T, Takebe F, Nodasaka Y, Matsuyama H, Hara I (2004) Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. Int J Syst Evol Microbiol 54:2013–2017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India, for providing necessary facilities and encouragement during the course of investigation and the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kalra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharti, N., Yadav, D., Barnawal, D. et al. Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29, 379–387 (2013). https://doi.org/10.1007/s11274-012-1192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1192-1

Keywords

Navigation