Skip to main content
Log in

Inclusion Agglomeration on Ultra-Low C Liquid Steel Surface: Roles of Ti in the Steel and the Oxygen Potential

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Behavior of inclusions as particles on liquid Ultra-Low C (ULC) steel was investigated both by an in-situ observation and a theoretical analysis. The behavior was examined in view of Ti content in the steel as an alloying component and of oxygen potential exerted on the surface of the steel melt. A confocal scanning laser microscopy with a gold image furnace was used for the observation, and the force exerted between two particles was extracted. It was found that the inclusions showed attraction each other, and agglomerated. When the oxygen potential was low (\(P_{\mathrm{O}_2} \simeq 10^{-22}\) bar), the presence of Ti (\([\%\ \text{Ti}] = 0.0735\)) did not influence on the agglomeration force as well as the acceleration. However, increasing \(P_{\mathrm{O}_2}\) (\(\simeq 10^{-15}\) bar) resulted in slight decrease of the acceleration. When Ti content was very low (\([\%\ \text{Ti}] =0.0018\)), \(P_{\mathrm{O}_2}\) did not influence the attraction. A post-mortem analysis of the inclusion composition revealed that the inclusions on the Ti-free steel surface were mostly alumina regardless of the \(P_{\mathrm{O}_2}\) employed in the present study, while those on the Ti-added steel were composed of \(\text{Fe}_t\text{O}\)\(\text{Al}_2\text{O}_3\) (low \(P_{\mathrm{O}_2}\)) or \(\text{Fe}_t\text{O}\)\(\text{TiO}_x\)(–\(\text{Al}_2\text{O}_3\)) (high \(P_{\mathrm{O}_2}\)). From the analysis using Kralchevski-Paunov model for lateral capillary force between two spherical particles, it is suggested that the formation of \(\text{Fe}_t\text{O}\)-containing oxidation product lowers the contact angle between the inclusion and the liquid steel, thereby lowering the agglomeration force as well as the acceleration. However, the model generally underestimated the agglomeration force.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The \(\alpha _k\) in the literature [73, 74] were measured at higher temperature than the temperature of the present study. Since temperature dependence of the \(\alpha _k\) is not know at present, the literature data were used without correction.

  2. In addition to this, if the \(\text{Fe}_t\text{O}\) containing liquid oxide forms between the inclusion and the liquid steel, the \(\alpha _k\) in the model would mean the contact angle between the inclusion and the liquid oxide. In such case, an interpretation of the capillary model is different to the previous cases.

  3. For a general case in the present study, \(\rho _{\mathrm{I}} = 7000\ \text{kg}\ \text{m}^{-3}\), \(\rho _{\mathrm{II}} = 0\ \text{kg}\ \text{m}^{-3}\), \(g = 9.8\ \text{m}\ \text{s}^{-2}\), \(\gamma = 1.4\ \text{N}\ \text{m}^{-1}\), \(R_k =10^{-5}\ \text{m}\) yields \((qR_k)^2 = 5 \times 10^{-6}\), satisfying the above condition.

  4. The summation for \(h_k\) and A rapidly decays. In the present study, the summation continued up to \(n =10\).

References

  1. J.R. Fekete, D.C. Strugala, Z. Yao, JOM 44, 17 (1992). https://doi.org/10.1007/BF03222745

    Article  CAS  Google Scholar 

  2. J.-I. Jang, Y. Kang, Met. Mater. Int. 27, 4814 (2021). https://doi.org/10.1007/s12540-020-00696-8

    Article  CAS  Google Scholar 

  3. N. Fukuda, Tetsu-to-Hagane 59, 231 (1973). https://doi.org/10.2355/tetsutohagane1955.59.2_231

    Article  CAS  Google Scholar 

  4. Y. Hiraga, Y. Yashima, K. Fujii, Taikabutsu Overseas 15, 22 (1995)

    Google Scholar 

  5. S. Basu, S.K. Choudhary, N.U. Girase, ISIJ Int. 44, 1653–1660 (2004)

  6. H. Cui, Y.-P. Bao, M. Wang, W.-S. Wu, Int. J. Min. Met. Mater. 17, 154 (2010). https://doi.org/10.1007/s12613-010-0206-y

    Article  CAS  Google Scholar 

  7. J.-H. Lee, M.-H. Kang, S.-K. Kim, J. Kim, M.-S. Kim, Y.-B. Kang, ISIJ Int. 59, 749 (2019). https://doi.org/10.2355/isijinternational.ISIJINT-2018-672

  8. H. Tsunekawa, T. Yamashita, T. Aoyama, R. Sugihara, Tetsu-to-Hagane 102, 202 (2016). https://doi.org/10.2355/tetsutohagane.TETSU-2015-061

    Article  Google Scholar 

  9. Y.-B. Kang, H.-G. Lee, ISIJ Int. 50, 501 (2010). https://doi.org/10.2355/isijinternational.50.501

    Article  CAS  Google Scholar 

  10. K. Seo, K.-H. Kim, H.J. Kim, H. Ryoo, G.M. Evans, C. Lee, Met. Mater. Int. 26, 1226 (2020). https://doi.org/10.1007/s12540-019-00390-4

    Article  CAS  Google Scholar 

  11. J.-H. Sim, T.-Y. Kim, J.-Y. Kim, C.-W. Kim, J.-H. Chung, J. Moon, C.-H. Lee, H.-U. Hong, Met. Mater. Int. 28, 337 (2022). https://doi.org/10.1007/s12540-020-00870-y

    Article  CAS  Google Scholar 

  12. S. Ghosh, M.C. Somani, D. Setman, S. Mula, Met. Mater. Int. 27, 2481 (2021). https://doi.org/10.1007/s12540-020-00827-1

    Article  CAS  Google Scholar 

  13. B. Wang, J. Li, Met. Mater. Int. 27, 2656 (2021). https://doi.org/10.1007/s12540-020-00617-9

    Article  CAS  Google Scholar 

  14. H. Matsuura, C. Wang, G. Wen, S. Sridhar, ISIJ Int. 47, 1265 (2007). https://doi.org/10.2355/isijinternational.47.1265

    Article  CAS  Google Scholar 

  15. C. Wang, N.T. Nuhfer, S. Sridhar, Metall. Mater. Trans. B 40, 1022 (2009). https://doi.org/10.1007/s11663-009-9290-7

    Article  CAS  Google Scholar 

  16. C. Wang, N. Nuhfer, S. Sridhar, Metall. Mater. Trans. B 40, 1005 (2009). https://doi.org/10.1007/s11663-009-9267-6

    Article  CAS  Google Scholar 

  17. C. Wang, N.T. Nuhfer, S. Sridhar, Metall. Mater. Trans. B 41, 1084 (2010). https://doi.org/10.1007/s11663-010-9397-x

    Article  CAS  Google Scholar 

  18. C. Wang, N. Verma, Y. Kwon, W. Tiekink, N. Kikuchi, S. Sridhar, ISIJ Int. 51, 375 (2011). https://doi.org/10.2355/isijinternational.51.375

    Article  CAS  Google Scholar 

  19. M.-A.V. Ende, M. Guo, R. Dekkers, M. Burty, J.V. Dyck, P.T. Jones, B. Blanpain, P. Wollants, ISIJ Int. 49, 1133 (2009). https://doi.org/10.2355/isijinternational.49.1133

    Article  Google Scholar 

  20. C. Bernhard, P. Dorrer, S. Michelic, R. Rössler, BHM Berg- und Hüttenmännische Monatshefte 164, 475 (2019). https://doi.org/10.1007/s00501-019-00900-2

    Article  CAS  Google Scholar 

  21. P. Dorrer, S.K. Michelic, C. Bernhard, A. Penz, R. Rössler, Steel Res. Int. 90, 1800635 (2019). https://doi.org/10.1002/srin.201800635

    Article  CAS  Google Scholar 

  22. W.-C. Doo, D.-Y. Kim, S.-C. Kang, K.-W. Yi, Met. Mater. Int. 13, 249 (2007). https://doi.org/10.1007/BF03027813

    Article  CAS  Google Scholar 

  23. M.-K. Sun, I.-H. Jung, H.-G. Lee, Met. Mater. Int. 14, 791 (2008). https://doi.org/10.3365/met.mat.2008.12.791

    Article  CAS  Google Scholar 

  24. K. Das, P. Choudhury, S. Das, J. Phase Equi. 23, 525 (2002)

    Article  CAS  Google Scholar 

  25. Y.-J. Park, W.-Y. Kim, Y.-B. Kang, J. Eur. Ceram. Soc. 41, 7362 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.06.052

    Article  CAS  Google Scholar 

  26. J.-H. Lee, M.-H. Kang, S.-K. Kim, Y.-B. Kang, ISIJ Int. 58, 1257 (2018). https://doi.org/10.2355/isijinternational.ISIJINT-2018-164

    Article  CAS  Google Scholar 

  27. J.-H. Lee, S.-K. Kim, M.-H. Kang, Y.-B. Kang, BHM Berg- und Hüttenmännische Monatshefte 163, 18 (2018). https://doi.org/10.1007/s00501-017-0687-3

    Article  CAS  Google Scholar 

  28. K. Sasai, Y. Mizukami, ISIJ Int. 41, 1331 (2001). https://doi.org/10.2355/isijinternational.41.1331

    Article  CAS  Google Scholar 

  29. T. Mizoguchi, Y. Ueshima, M. Sugiyama, K. Mizukami, ISIJ Int. 53, 639 (2013). https://doi.org/10.2355/isijinternational.53.639

    Article  CAS  Google Scholar 

  30. J.-H. Lee, Y.-B. Kang, ISIJ Int. 60, 426 (2020). https://doi.org/10.2355/isijinternational.ISIJINT-2019-384

    Article  CAS  Google Scholar 

  31. H. Yin, H. Shibata, T. Emi, M. Suzuki, ISIJ Int. 37, 946 (1997). https://doi.org/10.2355/isijinternational.37.946

    Article  CAS  Google Scholar 

  32. H. Yin, H. Shibata, T. Emi, M. Suzuki, ISIJ Int. 37, 936 (1997). https://doi.org/10.2355/isijinternational.37.936

    Article  CAS  Google Scholar 

  33. S. Kimura, K. Nakajima, S. Mizoguchi, Metall. Mater. Trans. B 32, 79 (2001). https://doi.org/10.1007/s11663-001-0010-1

    Article  Google Scholar 

  34. S. Vantilt, B. Coletti, B. Blanpain, J. Fransaer, P. Wollants, S. Sridhar, ISIJ Int. 44, 1 (2004). https://doi.org/10.2355/isijinternational.44.1

    Article  CAS  Google Scholar 

  35. J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, P. Jönsson, Mater. Sci. Eng. A 495, 316 (2008). https://doi.org/10.1016/j.msea.2007.09.084

    Article  CAS  Google Scholar 

  36. J. Appelberg, K. Nakajima, H. Shibata, A. Tilliander, P. Jönsson, Mater. Sci. Eng. A 495, 330 (2008). https://doi.org/10.1016/j.msea.2007.12.051

    Article  CAS  Google Scholar 

  37. Y. Kang, B. Sahebkar, P.R. Scheller, K. Morita, D. Sichen, Metall. Mater. Trans. B 42, 522 (2011). https://doi.org/10.1007/s11663-011-9497-2

    Article  CAS  Google Scholar 

  38. C. Xuan, A.V. Karasev, P.G. Jönsson, K. Nakajima, Steel Res. Int. 88, 1600090 (2017). https://doi.org/10.1002/srin.201600090

    Article  CAS  Google Scholar 

  39. S.K. Michelic, U.D. Salgado, C. Bernhard, IOP Conf. Ser. Mater. Sci. Eng. 143, 012010 (2016). https://doi.org/10.1088/1757-899X/143/1/012010

    Article  CAS  Google Scholar 

  40. G. Du, J. Li, Z.-B. Wang, C.-B. Shi, Steel Res. Int. 88, 1600185 (2017). https://doi.org/10.1002/srin.201600185

    Article  CAS  Google Scholar 

  41. W. Mu, N. Dogan, K.S. Coley, Metall. Mater. Trans. B 48, 2092 (2017). https://doi.org/10.1007/s11663-017-0998-5

    Article  CAS  Google Scholar 

  42. W. Mu, N. Dogan, K.S. Coley, Metall. Mater. Trans. B 48, 2379 (2017). https://doi.org/10.1007/s11663-017-1027-4

    Article  CAS  Google Scholar 

  43. B. Coletti, B. Blanpain, S. Vantilt, S. Sridhar, Metall. Mater. Trans. B 34, 533 (2003). https://doi.org/10.1007/s11663-003-0021-1

    Article  Google Scholar 

  44. W. Mu, N. Dogan, K.S. Coley, JOM 70, 1199 (2018). https://doi.org/10.1007/s11837-018-2893-1

    Article  CAS  Google Scholar 

  45. L. Cao, G. Wang, Y. Zhao, S. Sridhar, H. Lei, Metall. Mater. Trans. B 50, 2502 (2019). https://doi.org/10.1007/s11663-019-01688-9

    Article  CAS  Google Scholar 

  46. C. Xuan, W. Mu, J. Mater. Sci. 54, 8684 (2019). https://doi.org/10.1007/s10853-019-03458-z

    Article  CAS  Google Scholar 

  47. W. Mu, C. Xuan, Metall. Mater. Trans. B 50, 2694 (2019). https://doi.org/10.1007/s11663-019-01686-x

    Article  CAS  Google Scholar 

  48. G. Wang, Y. Zhao, Y. Xiao, P. Jin, S. Li, S. Sridhar, Metall. Mater. Trans. B 51, 3051 (2020). https://doi.org/10.1007/s11663-020-01978-7

    Article  CAS  Google Scholar 

  49. Y. Wang, C. Liu, Metall. Mater. Trans. B 51, 2585 (2020). https://doi.org/10.1007/s11663-020-01938-1

    Article  CAS  Google Scholar 

  50. L. Wang, S. Yang, J. Li, C. Chen, C. Li, X. Li, Steel Res. Int. 97, 2100013 (2021). https://doi.org/10.1002/srin.202100013

    Article  CAS  Google Scholar 

  51. Y. Wang, C. Liu, ISIJ Int. 61, 1396 (2021). https://doi.org/10.2355/isijinternational.ISIJINT-2020-684

    Article  CAS  Google Scholar 

  52. Y. Li, L. Wang, J. Li, S. Yang, C. Chen, C. Li, X. Li, ISIJ Int. 61, 753 (2021). https://doi.org/10.2355/isijinternational.ISIJINT-2020-585

  53. K. Nakajima, S. Mizoguchi, Metall. Mater. Trans. B 32, 629 (2001). https://doi.org/10.1007/s11663-001-0118-3

    Article  Google Scholar 

  54. K. Sasai, ISIJ Int. 54, 2780 (2014). https://doi.org/10.2355/isijinternational.54.2780

    Article  CAS  Google Scholar 

  55. K. Sasai, ISIJ Int. 56, 1013 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2016-038

    Article  CAS  Google Scholar 

  56. K. Sasai, ISIJ Int. 58, 469 (2018). https://doi.org/10.2355/isijinternational.ISIJINT-2017-480

    Article  CAS  Google Scholar 

  57. K. Sasai, ISIJ Int. 60, 409 (2020). https://doi.org/10.2355/isijinternational.ISIJINT-2019-107

    Article  CAS  Google Scholar 

  58. L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, M. Guo, ISIJ Int. 55, 1891 (2015). https://doi.org/10.2355/isijinternational.ISIJINT-2015-099

  59. L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, M. Guo, ISIJ Int. 56, 926 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-561

    Article  CAS  Google Scholar 

  60. L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, M. Guo, ISIJ Int. 56, 1529 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-621

    Article  CAS  Google Scholar 

  61. L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, M. Guo, Acta Mater. 120, 443 (2016). https://doi.org/10.1016/j.actamat.2016.08.046

  62. P. Presoly, R. Pierer, C. Bernhard, Metall. Mater. Trans. A 44, 5377 (2013). https://doi.org/10.1007/s11661-013-1671-5

  63. Y. M. Cho, Y.-J. Park, D.-H. Kim, M.-H. Song, Y.-B. Kang, Inclusion evolution on surface of liquid ultra low carbon steel: CSLM Investigation and composition analysis, Paper presented at 2021 Spring Conference of the Korean Institute of Metals and Materials, Wellihillipark, Hoengseong, pp. 28–30 (2021)

  64. J.-H. Lee, Y.-B. Kang, ISIJ Int. 60, 258 (2020). https://doi.org/10.2355/isijinternational.ISIJINT-2019-355

    Article  CAS  Google Scholar 

  65. C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A. Pelton, C. Robelin, S. Petersen, Calphad 33, 295 (2009). https://doi.org/10.1016/j.calphad.2008.09.009

    Article  CAS  Google Scholar 

  66. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.-A. Van Ende, Calphad 54, 35 (2016). https://doi.org/10.1016/j.calphad.2016.05.002

    Article  CAS  Google Scholar 

  67. Image J, developed at U.S. National Institutes of Health. http://imagej.nih.gov/ij/

  68. B.J. Monaghan, L. Chen, J. Non-Crystall. Solids 347, 254 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.09.011

    Article  CAS  Google Scholar 

  69. P. Kralchevsky, V. Paunov, I. Ivanov, K. Nagayama, J. Colloid Int. Sci. 151, 79 (1992). https://doi.org/10.1016/0021-9797(92)90239-I

    Article  Google Scholar 

  70. P.A. Kralchevsky, V.N. Paunov, N.D. Denkov, I.B. Ivanov, K. Nagayama, J. Colloid Int. Sci. 155, 420 (1993)

    Article  CAS  Google Scholar 

  71. P.A. Kralchevsky, N.D. Denkov, V.N. Paunov, O.D. Velev, I.B. Ivanov, H. Yoshimura, K. Nagayama, J. Physics, Condens. Matter 6, A395 (1994). https://doi.org/10.1088/0953-8984/6/23A/065

    Article  CAS  Google Scholar 

  72. V.N. Paunov, P.A. Kralchevsky, N.D. Denkov, K. Nagayama, J. Colloid Int. Sci. 157, 100 (1993). https://doi.org/10.1006/jcis.1993.1163

    Article  CAS  Google Scholar 

  73. K. Nogi, K. Ogino, Can. Metall. Quart. 22, 19 (1983). https://doi.org/10.1179/cmq.1983.22.1.19

  74. A. Karasangabo, C. Bernhard, J. Adhes. Sci. Technol. 26, 1141 (2012). https://doi.org/10.1163/016942411X580252

    Article  CAS  Google Scholar 

  75. K. Nakashima, K. Takihira, K. Mori, N. Shinozaki, J. Jpn. Inst. Met. 55, 1199 (1991). https://doi.org/10.2320/jinstmet1952.55.11_1199

  76. N. Takiuchi, T. Taniguchi, N. Shinozaki, K. Mukai, J. Jpn. Inst. Met. 55, 44 (1991). https://doi.org/10.2320/jinstmet1952.55.1_44

  77. N. Takiuchi, T. Taniguchi, Y. Tanaka, N. Shinozaki, K. Mukai, J. Jpn. Inst. Met. 55, 180 (1991). https://doi.org/10.2320/jinstmet1952.55.2_180

  78. K. Ogino, K. Nogi, Y. Koshida, Tetsu-to-Hagané 59, 1380 (1973). https://doi.org/10.2355/tetsutohagane1955.59.10_1380

  79. H. Barati, M. Wu, S. Michelic, S. Ilie, A. Kharicha, A. Ludwig, Y-B. Kang, H. Barati, M.S. Wu, Metall. Mater. Trans. B 52B, 4167 (2021). https://doi.org/10.1007/s11663-021-02336-x

  80. D. Chan, J. Henry, L. White, J. Colloid Int. Sci. 79, 410 (1981). https://doi.org/10.1016/0021-9797(81)90092-8

    Article  CAS  Google Scholar 

  81. B.V. Derjaguin, Dokl. Akad. Nauk USSR 51, 517 (1946)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by POSCO, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Bae Kang.

Ethics declarations

Conflicts of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Kralchevski–Paunov Model

Appendix: Kralchevski–Paunov Model

Capillary force between two floating particles on a fluid phase (I) with higher density (\(\rho _{\mathrm{I}}\)) which is immiscible with the other fluid phase (II) with lower density (\(\rho _{\mathrm{II}}\)) was formulated by Kralchevsky et al. [69,70,71,72]. In the present study, formulation given by Paunov et al. was employed [72].

Figure 11 shows four different cases of floating particle between phase I and phase II. The particle k was assumed to be a sphere with a radius \(R_k\). In the case of inclusion floating on liquid steel surface, the phases I and II correspond to liquid steel and gas, respectively. Figure 11a and b show cases when the particle wets to the phase II, while Fig. 11c and d show other cases when the particle does not wet to the phase II. Therefore, the contact angle (\(\alpha _k\)) is lower than \(90^\circ\) ((a) and (b)), or is higher than 90 \(^\circ \) ((c) and (d)). Figure 11a and c correspond to cases of lighter particle, therefore, center of the particle is located above the horizontal line separating the phase I and the phase II (\(Z_c^k > 0\)). Figure 11b and d refer to other cases of heavier particle (\(Z_c^k < 0\)). Meniscus is shown by a red curve for each case (see online version for the color). Characteristic geometric variables can be seen in the figure (\(r_k\): radius of the contact line, \(h_k\): the meniscus elevation, \(\psi _k\): slope at the respective contact line, \(b_k\): depth of immersion).

Fig. 11
figure 11

Floating particles on liquid surface

When two particles (\(k=1\) and 2) approach each other, the above geometric variables vary due to suppression/elevation of the meniscus between the two particles. The energy change (\(\Delta W\)) due to the change of the distance between the two particles consists of three parts: gravitational, wetting, and meniscus contributions. After taking into account the three contributions to the total energy along with the geometric relationship, Paunov et al. derived the following equation [72]:

$$\begin{aligned} \Delta W&= (\rho _{\mathrm{I}}-\rho _{\mathrm{II}})g \sum _{k=1}^2 \left[ (D_kV_s^{k} -V_l^{k})Z_c^{k} +\frac{\pi }{4}r_k^2(r_k^2 + 2h_k^2)\right] \nonumber \\&\quad + \pi \gamma \sum _{k=1}^2 (h_kr_k\sin \psi _k - r_k^2 - 2R_kb_k \cos \alpha _k) - W_\infty \end{aligned}$$
(12)

where g, \(\gamma \), \(V_s^k\), \(V_l^k\), and \(W_\infty \) are the gravitational acceleration (in \(\text{m}\ \text{s}^{-2}\)), the surface tension of the phase I (if the phase II is gas) (in \(\text{N}\ \text{m}^{-1}\)), the volume of the particle k (in \(\text{m}^3\)), the volume of the part of the particle which is immersed into the phase I (in \(\text{m}^3\)), and the energy of the system when the two particles are separated infinitely, respectively. \(D_k\) is the density ratio:

$$\begin{aligned} D_k = (\rho _k - \rho _{\mathrm{II}})/(\rho _{\mathrm{I}} - \rho _{\mathrm{II}}) \end{aligned}$$
(13)

Details of the derivation is out of scope of the present study, and the readers are invited to read [72].

The lateral capillary force in the limit of \((qR_k)^2<< 1\) is obtained byFootnote 3:

$$\begin{aligned} F = \frac{d \Delta W}{dL} = -\pi \gamma \sum _{k=1}^2 Q_k \frac{dh_k}{dL} \end{aligned}$$
(14)

where L and \(Q_k\) are the distance between centers of two particles (in m) and the capillary charge (\(= r_k \sin \psi _k\), in m), and q are the reciprocal of capillary length (\(\text{m}^{-1}\)):

$$\begin{aligned} q = \sqrt{\frac{(\rho _{\mathrm{I}}-\rho _{\mathrm{II}})g}{\gamma }} \end{aligned}$$
(15)

The \(Q_k\) is introduced because the vertical force due to the meniscus surface tension \(\gamma \) is counterbalanced by the gravitational force (\(F_g^k\)):

$$\begin{aligned} F_g^k= & {} 2\pi \gamma (r_k \sin \psi _k) \end{aligned}$$
(16)
$$\begin{aligned}= & {} 2\pi \gamma Q_k \end{aligned}$$
(17)

In the limit of \((qL)^2<< 1\), the Eq. (14) is reduced to:

$$\begin{aligned} F = 2 \pi \gamma \frac{Q_1Q_2}{L} \quad \text {where} \quad r_k<< L<< q^{-1} \end{aligned}$$
(18)

In order to calculate the capillary lateral force F, it is necessary to calculate \(Q_k\) at each L. The following procedure is taken from Paunov et al. [72]. When the two particles are separated by a long distance, e.g. \(L = \infty \), Chan et al. derived the following expression for the \(Q_k\) [80]:

$$\begin{aligned} Q_{k,\infty } = \frac{1}{6}q^2R_k^3 (2-4D_k+3\cos \alpha _k - \cos ^3 \alpha _k) \end{aligned}$$
(19)

They also presumed that the meniscus slope is small under the condition. Paunov et al. interpreted this as \(\cos \psi _\infty \approx 1\), and the following equation for \(r_k\) was derived from the geometry of this system (Fig. 11):

$$\begin{aligned} r_{k,\infty } = R_k \sin (\alpha _k + \psi _{k,\infty }) \approx R_k \cos \alpha _k \sin \psi _k + R_k \sin \alpha _k \end{aligned}$$
(20)

Using the Eqs. (16), (17), (20), \(r_{k,\infty }\) was derived:

$$\begin{aligned} r_{k,\infty } = \frac{1}{2}\left[ R_k \sin \alpha _k +\sqrt{R_k^2 \sin ^2 \alpha _k + 4Q_{k,\infty } R_k \cos \alpha _k}\right] \end{aligned}$$
(21)

The elevation of the contact line at \(L = \infty \) (\(h_{k,\infty }\)) was independently reported by Derjaquin as [81]:

$$\begin{aligned} h_{k,\infty } = r_{k,\infty } \sin \psi _{k,\infty } \ln \frac{4}{\gamma _e q r_{k,\infty } (1 + \cos \phi _{k,\infty })} \end{aligned}$$
(22)

where \(\gamma _e = 1.781072418\cdots \) (\(\ln \gamma _e\) is the Euler-Mascheroni constant). From the geometry of this system (Fig. 11), the immersion depth \(b_{k,\infty }\) is obtained as:

$$\begin{aligned} b_{k,\infty } = R_k\left[ \cos (\alpha _k + \psi _{k,\infty }) + 1\right] \end{aligned}$$
(23)

Using the known physicochemical properties (\(\rho _{\mathrm{I}}\), \(\rho _{\mathrm{II}}\), \(\rho _k\), \(\alpha _k\), and \(\gamma \)), the above four parameters (\(Q_{k,\infty }\), \(r_{k,\infty }\), \(h_{k,\infty }\), and \(b_{k,\infty }\)) were obtained for the particle k (\(\text{radius}=R_k\), \(k=1\) and 2) at \(L = \infty \).

\(Q_k\), \(r_k\), \(h_k\), and \(b_k\) vary as L varies via changing \(\psi _k\), because of change of the meniscus. This generates a lateral force between the two particles. Kralchevsky et al. [70] proposed the following general expression for \(h_k\) in the limit of \((qL)^2<< 1\):

$$\begin{aligned} h_k&= Q_k \{\tau _k + 2 \ln [1 - \exp (-2\tau _k)]\}\nonumber \\&\quad - (Q_1 + Q_2) \ln (\gamma _eqa) + (Q_1 - Q_2) \nonumber \\&\quad \times \left[ A - (-1)^k \sum _{n=1}^\infty \frac{2}{n} \frac{\exp (-n\tau _k)\sinh n\tau _j}{\sinh n(\tau _1 + \tau _2)}\right] \end{aligned}$$
(24)

where

$$\begin{aligned}&A = \sum _{n=1}^\infty \frac{1}{n} \frac{\sinh n (\tau _1 - \tau _2)}{\sinh n(\tau _1 + \tau _2)} \end{aligned}$$
(25)
$$\begin{aligned}&\tau _k = \ln \left( \frac{\bar{a}}{r_k} +\sqrt{\frac{\bar{a}^2}{r_k^2}+1}\right) \end{aligned}$$
(26)
$$\begin{aligned}&\bar{a}^2 = \frac{[L^2 - (r_1 + r_2)^2][L^2 - (r_1-r_2)^2]}{(2L)^2}, \end{aligned}$$
(27)

respectivelyFootnote 4

From force balance and geometry of the system, a general equation for \(Q_k\) is derived as:

$$\begin{aligned} Q_{k} = \frac{1}{2}q^2 \left[ b_k^2\left( R_k - \frac{b_k}{3}\right) -\frac{4}{3} D_kR_k^3 - r_k^2 h_k\right] \end{aligned}$$
(28)

The radius of the contact line (\(r_k\)) can be also obtained from the geometry of the system by somewhat different way used in the Eq. (20):

$$\begin{aligned} r_k = \sqrt{b_k (2R_k-b_k)} \end{aligned}$$
(29)

Using the Eqs. (16), (17), \(\psi _k\) is obtained as:

$$\begin{aligned} \psi _k = \arcsin \left( \frac{Q_k}{r_k}\right) \end{aligned}$$
(30)

and \(b_k\) in general condition is written as:

$$\begin{aligned} b_{k} = R_k\left[ \cos (\alpha _k + \psi _{k}) + 1\right] \end{aligned}$$
(31)

which is essentially the same as the Eq. (23).

The capillary lateral force is then calculated as follows.

  1. 1.

    Set the particle radius \(R_1\) and \(R_2\).

  2. 2.

    Calculate \(D_1\), \(D_2\), and q from all available the physicochemical properties \(\gamma \), \(\rho _{\mathrm{I}}\), \(\rho _{\mathrm{II}}\), \(\rho _1\) and \(\rho _2\).

  3. 3.

    Calculate \(Q_{k,\infty }\), \(r_{k,\infty }\), \(h_{k,\infty }\), and \(b_{k,\infty }\) using the Eqs. (19), (21), (22), and (23), respectively.

  4. 4.

    Set \(Q_k = Q_{k,\infty }\), \(r_k = r_{k,\infty }\), \(h_k =h_{k,\infty }\), \(b_k = b_{k,\infty }\), and \(\psi _k =\psi _{k,\infty }\).

  5. 5.

    \(h_k\) at a finte L is obtained by the Eq. (24) along with the Eqs. (25) to (27), the updated \(Q_k\) and \(r_k\).

  6. 6.

    \(Q_k\), \(r_k\), \(\psi _k\), and \(b_k\) are obtained by the Eqs. (28), (29), (30), and (31), in the order, respectively.

  7. 7.

    \(h_k\) at the L is calculated by the Eq. (24) along with the Eqs. (25) to (27), followed by the calculations for \(Q_k\), \(r_k\), \(\psi _k\), and \(b_k\) by the Eqs. (28), (29), (30), and (31), respectively. This is repeated until all the calculated values are converged after this iteration.

  8. 8.

    F at the L is calculated using the Eq. (18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Choi, JB., Hong, HM. et al. Inclusion Agglomeration on Ultra-Low C Liquid Steel Surface: Roles of Ti in the Steel and the Oxygen Potential. Met. Mater. Int. 28, 3106–3119 (2022). https://doi.org/10.1007/s12540-022-01190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01190-z

Keywords

Navigation