Skip to main content
Log in

Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel egg-like nanosphere was designed as a long-lived catalyst and is described as Fe3O4@nSiO2-NH2-Fe2O3xBi2O3@mSiO2. The catalyst was prepared using a modified Stöber method with template-free surface-protected etching. The catalyst particle consists of a magnetic Fe3O4 core as the “yolk”, an inner silica shell bearing active Fe2O3xBi2O3 species as the “egg white”, and outer mesoporous silica as the “egg shell”. It exhibits an excellent performance in the catalytic reduction of nitro aromatics to corresponding anilines in a fixed-bed continuous-flow reactor. The reaction could be performed at 80 °C and could reach complete conversion in less than 1 min with only a 7% excess of hydrazine hydrate. The catalyst bed could be easily shifted between different substrates without cross-contamination because of the uniformity of the catalyst particles. This catalyst exhibited very good stability in the continuous-flow protocol. In the long-term reduction of p-nitrophenol with 0.5 mmol·min−1 productivity, it worked for more than 1,500 cycles without any catalytic activity loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Deciding whether to go with the flow: Evaluating the merits of flow reactors for synthesis. Angew. Chem., Int. Ed. 2011, 50, 7502–7519.

    Article  Google Scholar 

  2. Pastre, J. C.; Browne, D. L.; Ley, S. V. Flow chemistry syntheses of natural products. Chem. Soc. Rev. 2013, 42, 8849–8869.

    Article  Google Scholar 

  3. Porta, R.; Benaglia, M.; Puglisi, A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Org. Process Res. Dev. 2016, 20, 2–25.

    Article  Google Scholar 

  4. Wiles, C.; Watts, P. Continuous flow reactors: Aperspective. Green Chem. 2012, 14, 38–54.

    Article  Google Scholar 

  5. Gemoets, H. P. L.; Su, Y. H.; Shang, M. J.; Hessel, V.; Luque, R.; Noël, T. Liquid phase oxidation chemistry in continuous-flow microreactors. Chem. Soc. Rev. 2016, 45, 83–117.

    Article  Google Scholar 

  6. Adamo, A.; Beingessner, R. L.; Behnam, M.; Chen, J.; Jamison, T.F.; Jensen, K. F.; Monbaliu, J. C. M.; Myerson, A. S.; Revalor, E. M.; Snead, D. R. et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 2016, 352, 61–67.

    Article  Google Scholar 

  7. Tsubogo, T.; Oyamada, H. S.; Kobayashi, S. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts. Nature 2015, 520, 329–332.

    Article  Google Scholar 

  8. Gutmann, B.; Cantillo, D.; Kappe, C. O. Continuous-flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem., Int. Ed. 2015, 54, 6688–6728.

    Article  Google Scholar 

  9. He, Z.; Jamison, T. F. Continuous-flow synthesis of functionalized phenols by aerobic oxidation of grignard reagents. Angew. Chem., Int. Ed. 2014, 53, 3353–3357.

    Article  Google Scholar 

  10. Cantillo, D.; Kappe, C. O. Immobilized transition metals as catalysts for cross-couplings in continuous flow—A critical assessment of the reaction mechanism and metal leaching. ChemCatChem 2014, 6, 3286–3305.

    Article  Google Scholar 

  11. Irfan, M.; Glasnov, T. N.; Kappe, C. O. Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors. ChemSusChem 2011, 4, 300–316.

    Article  Google Scholar 

  12. Liu, X. Y.; Ünal, B.; Jensen, K. F. Heterogeneous catalysis with continuous flow microreactors. Catal. Sci. Technol. 2012, 2, 2134–2138.

    Article  Google Scholar 

  13. Pascanu, V.; Hansen, P. R.; Gómez, A. B.; Ayats, C.; Platero-Prats, A. E.; Johansson, M. J.; Pericàs, M. A.; Martín-Matute, B. Highly functionalized biaryls via suzuki–miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes. ChemSusChem 2015, 8, 123–130.

    Article  Google Scholar 

  14. Wiles, C.; Watts, P. Continuous process technology: Atool for sustainable production. Green Chem. 2014, 16, 55–62.

    Article  Google Scholar 

  15. White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 2009, 38, 481–494.

    Article  Google Scholar 

  16. Zhong, C. J.; Maye, M. M. Core–shell assembled nanoparticles as catalysts. Adv. Mater. 2001, 13, 1507–1511.

    Article  Google Scholar 

  17. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem., Int. Ed. 2008, 47, 8438–8441.

    Article  Google Scholar 

  18. Gai, S. L.; Yang, P. P.; Li, C. X.; Wang, W. X.; Dai, Y. L.; Niu, N.; Lin, J. Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 2010, 20, 1166–1172.

    Article  Google Scholar 

  19. Slowing, I. I.; Vivero-Escoto, J. L.; Trewyn, B. G.; Lin, V. S. Y. Mesoporous silica nanoparticles: Structural design and applications. J. Mater. Chem. 2010, 20, 7924–7937.

    Article  Google Scholar 

  20. Stoeva, S. I.; Huo, F. W.; Lee, J. S.; Mirkin, C. A. threelayer composite magnetic nanoparticle probes for DNA. J. Am. Chem. Soc. 2005, 127, 15362–15363.

    Article  Google Scholar 

  21. Deng, Y. H.; Deng, C. H.; Qi, D. W.; Liu, C.; Liu, J.; Zhang, X. M.; Zhao, D.Y. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin. Adv. Mater. 2009, 21, 1377–1382.

    Article  Google Scholar 

  22. Suteewong, T.; Sai, H.; Hovden, R.; Muller, D.; Bradbury, M. S.; Gruner, S. M.; Wiesner, U. Multicompartmentmesoporous silica nanoparticles with branched shapes: An epitaxial growth mechanism. Science 2013, 340, 337–341.

    Article  Google Scholar 

  23. Gawande, M. B.; Monga, Y.; Zboril, R.; Sharma, R. K. Silica-decorated magnetic nanocomposites for catalytic applications. Coordin. Chem. Rev. 2015, 288, 118–143.

    Article  Google Scholar 

  24. Wang, C.; Chen, J. C.; Zhou, X. R.; Li, W.; Liu, Y.; Yue, Q.; Xue, Z. T.; Li, Y. H.; Elzatahry, A. A.; Deng, Y. H.; Zhao, D. Y. Magnetic yolk–shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Res. 2015, 8, 238–245.

    Article  Google Scholar 

  25. Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222–1244.

    Article  Google Scholar 

  26. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28–29.

    Article  Google Scholar 

  27. Liang, X. L.; Li, J.; Joo, J. B.; Gutiérrez, A.; Tillekaratne, A.; Lee, I.; Yin, Y. D.; Zaera, F. Diffusion through the shells of yolk–shell and core–shell nanostructures in the liquid phase. Angew. Chem., Int. Ed. 2012, 51, 8034–8036.

    Article  Google Scholar 

  28. Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 2005, 44, 7852–7872.

    Article  Google Scholar 

  29. Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H. Z.; Biradar, A. V.; Peng, D. L.; Zboril, R.; Varma, R. S. Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 2015, 44, 7540–7590.

    Article  Google Scholar 

  30. Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2011, 4, 115–123.

    Article  Google Scholar 

  31. Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W.; Miao, D. G.; Liu, Y. Synthesis and stabilization of metal nanocatalysts for reduction reactions—A reviewJ. Mater. Chem. A 2015, 3, 11157–11182.

    Article  Google Scholar 

  32. El-Toni, A. M.; Habila, M. A.; Labis, J. P.; ALOthman, Z. A.; Alhoshan, M.; Elzatahry, A. A.; Zhang, F. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures Nanoscale 2016, 8, 2510–2531.

    Article  Google Scholar 

  33. Jagadeesh, R.V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

    Article  Google Scholar 

  34. Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

    Article  Google Scholar 

  35. Zhu, K. L.; Shaver, M. P.; Thomas, S. P. Chemoselective nitro reduction and hydroamination using a single iron catalyst. Chem. Sci. 2016, 7, 3031–3035.

    Article  Google Scholar 

  36. Yang, B.; Zhang, Q. K.; Ma, X. Y.; Kang, J. Q.; Shi, J. M.; Tang, B. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its applicationin the hydrogenation of nitroarenes. Nano Res. 2016, 9, 1879–1890.

    Article  Google Scholar 

  37. Oubenali, M.; Vanucci, G.; Machado, B.; Kacimi, M.; Ziyad, M.; Faria, J.; Raspolli-Galetti, A.; Serp, P. Hydrogenation of p-chloronitrobenzene over nanostructured-carbon-supported ruthenium catalysts. ChemSusChem 2011, 4, 950–956.

    Article  Google Scholar 

  38. Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: Atrusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410–9431.

    Article  Google Scholar 

  39. Zhao, P. X.; Feng, X. W.; Huang, D. S.; Yang, G. Y.; Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordin. Chem. Rev. 2015, 287, 114–136.

    Article  Google Scholar 

  40. Yu, L.; Zhang, Q.; Li, S. S.; Huang, J.; Liu, Y. M.; He, H. Y.; Cao, Y. Gold-catalyzed reductive transformation of nitro compounds using formic acid: Mild, efficient, and versatile. ChemSusChem 2015, 8, 3029–3035.

    Article  Google Scholar 

  41. Wu, Y. E.; Wang, D. S.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. D. Sophisticated construction of Au islands on Pt−Ni: An ideal trimetallicnanoframe catalyst. J. Am. Chem. Soc. 2014, 136, 11594−11597.

    Article  Google Scholar 

  42. Gawande, M. B.; Rathi, A. K.; Tucek, J.; Safarova, K.; Bundaleski, N.; Teodoro, O. M. N. D.; Kvitek, L.; Varma, R. S.; Zboril, R. Magnetic gold nanocatalyst (nanocat- Fe–Au): Catalytic applications for the oxidative esterification and hydrogen transfer reactions. Green Chem. 2014, 16, 4137–4143.

    Article  Google Scholar 

  43. Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. NanoRes. 2015, 8, 1365–1372.

    Google Scholar 

  44. Jia, W. G.; Zhang, H.; Zhang, T.; Xie, D.; Ling, S.; Sheng, E. H. Half-sandwich ruthenium complexes with Schiff-base ligands: Syntheses, characterization, and catalytic activities for the reduction of nitroarenes. Organometallics 2016, 35, 503–512.

    Article  Google Scholar 

  45. Wang, Y.; Rong, Z. M.; Wang, Y.; Zhang, P.; Wang, Y.; Qu, J. P. Ruthenium nanoparticles loaded on multiwalled carbon nanotubes for liquid-phase hydrogenation of fine chemicals: An exploration of confinement effect. J. Catal. 2015, 329, 95–106.

    Article  Google Scholar 

  46. Gu, J.; Zhang, Z. Y.; Hu, P.; Ding, L. P.; Xue, N. H.; Peng, L. M.; Guo, X. F.; Lin, M.; Ding, W. P. Platinum nanoparticles encapsulated in MFI zeolite crystals by a two-step dry gel conversion method as a highly selective hydrogenation catalyst. ACS Catal. 2015, 5, 6893–6901.

    Article  Google Scholar 

  47. Li, Z.; Yu, R.; Huang, J. L.; Shi, Y. S.; Zhang, D. Y.; Zhong, X. Y.; Wang, D. S.; Wu, Y. E.; Li, Y. D. Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nat. Commun. 2015, 6, 8248.

    Article  Google Scholar 

  48. Iihama, S.; Furukawa, S.; Komatsu, T. Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound. ACS Catal. 2016, 6, 742–746.

    Article  Google Scholar 

  49. Li, L.Y.; Zhou, C. S.; Zhao, H. X.; Wang, R. H. Spatial control of palladium nanoparticles in flexibleclick-based porous organic polymers for hydrogenationof olefins and nitrobenzene. Nano Res. 2015, 8, 709–721.

    Article  Google Scholar 

  50. El-Hout, S. I.; El-Sheikh, S. M.; Hassan, H. M. A.; Harraz, F. A.; Ibrahim, I. A.; El-Sharkawy, E. A. A green chemical route for synthesis of graphene supported palladium nanoparticles: Ahighly active and recyclable catalyst for reduction of nitrobenzene. Appl. Catal. A: Gen. 2015, 503, 176–185.

    Article  Google Scholar 

  51. Karimi, B.; Mansouri, F.; Vali, H. A highly water-dispersible/ magnetically separable palladium catalyst: Selective transfer hydrogenation or direct reductive N-formylation of nitroarenes in water. ChemPlusChem 2015, 80, 1750–1759.

    Article  Google Scholar 

  52. Gu, X. M.; Qi, W.; Xu, X. Z.; Sun, Z. H.; Zhang, L. Y.; Liu, W.; Pan, X. L.; Su, D. S. Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 2014, 6, 6609–6616.

    Article  Google Scholar 

  53. Jang, Y.; Kim, S.; Jun, S. W.; Kim, B. H.; Hwang, S.; Song, I. K.; Kim, B. M.; Hyeon, T. Simple one-pot synthesis of Rh–Fe3O4heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes. Chem. Commun. 2011, 47, 3601–3603.

    Article  Google Scholar 

  54. Ganji, S.; Enumula, S. S.; Marella, R. K.; Rao, K. S. R.; Burri, D. R. RhNPs/SBA-NH2: Ahigh-performance catalyst for aqueous phase reduction of nitroarenes to aminoarenes at room temperature. Catal. Sci. Technol. 2014, 4, 1813–1819.

    Article  Google Scholar 

  55. Enthaler, S.; Junge, K.; Beller, M. Sustainable metal catalysis with iron: From rust to a rising star? Angew. Chem., Int. Ed. 2008, 47, 3317–3321.

    Article  Google Scholar 

  56. Junge, K.; Wendt, B.; Shaikh, N.; Beller, M. Iron-catalyzed selective reduction of nitroarenes to anilines using organosilanes. Chem. Commun. 2010, 46, 1769–1771.

    Article  Google Scholar 

  57. Jagadeesh, R.V.; Wienhöfer, G.; Westerhaus, F. A.; Surkus, A. E.; Pohl, M. M.; Junge, H.; Junge, K.; Beller, M. Efficient and highly selective iron-catalyzedreduction of nitroarenes. Chem. Commun. 2011, 47, 10972–10974.

    Article  Google Scholar 

  58. Cantillo, D.; Baghbanzadeh, M.; Kappe, C. O. In situ generated iron oxide nanocrystals as efficient and selective catalysts for the reduction of nitroarenes using a continuous flow method. Angew. Chem., Int. Ed. 2012, 51, 10190–10193.

    Article  Google Scholar 

  59. Dey, R.; Mukherjee, N.; Ahammed, S.; Ranu, B. C. Highly selective reduction of nitroarenes by iron(0) nanoparticles in water. Chem. Commun. 2012, 48, 7982–7984.

    Article  Google Scholar 

  60. Zhang, Q.; Lee, I.; Joo, J. B.; Zaera, F.; Yin, Y. D. Core–shell nanostructured catalysts. Acc. Chem. Res. 2013, 46, 1816–1824.

    Article  Google Scholar 

  61. Moghaddam, M. M.; Pieber, B.; Glasnov, T.; Kappe, C. O. Immobilized iron oxide nanoparticles as stable and reusable catalysts for hydrazine-mediated nitro reductions in continuous flow. ChemSusChem 2014, 7, 3122–3131.

    Article  Google Scholar 

  62. Loos, P.; Alex, H.; Hassfeld, J.; Lovis, K.; Platzek, J.; Steinfeldt, N.; Hübner, S. Selective hydrogenation of halogenated nitroaromatics to haloanilines in batch and flow. Org. ProcessRes. Dev. 2016, 20, 452–464.

    Article  Google Scholar 

  63. Rathi, A. K.; Gawande, M. B.; Ranc, V.; Pechousek, J.; Petr, M.; Cepe, K.; Varma, R. S.; Zboril, R. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite–Pdnanocomposites.Catal. Sci. Technol. 2016, 6, 152–160.

    Google Scholar 

  64. Zhao, W. R.; Gu, J. L.; Zhang, L. X.; Chen, H. R.; Shi, J. L. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 2005, 127, 8916–8917.

    Article  Google Scholar 

  65. Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D. Core–satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angew. Chem., Int. Ed. 2008, 47, 8924–8928.

    Article  Google Scholar 

  66. Zhang, C. F.; Lu, J. M.; Li, M. R.; Wang, Y. H.; Zhang, Z.; Chen, H. J.; Wang, F. Transfer hydrogenation ofnitroarenes with hydrazine at near-room temperature catalysed by a MoO2 catalyst. Green Chem. 2016, 18, 2435–2442.

    Article  Google Scholar 

  67. Feng, W. H.; Dong, H. X.; Niu, L. B.; Wen, X.; Huo, L.; Bai, G. Y. A novel Fe3O4@nSiO2@NiPd–PVP@mSiO2 multi-shell core-shell nanocomposite for cinnamic acid hydrogenation in water. J. Mater. Chem. A 2015, 3, 19807–19814.

    Article  Google Scholar 

  68. Beswick, O.; Yuranov, I.; Alexander, D. T. L.; Kiwi-Minsker, L. Iron oxide nanoparticles supported on activated carbon fibers catalyze chemoselective reduction of nitroarenes under mild conditions. Catal. Today 2015, 249, 45–51.

    Article  Google Scholar 

  69. Gu, X. M.; Sun, Z. H.; Wu, S. C.; Qi, W.; Wang, H. H.; Xu, X. Z.; Su, D. S. Surfactant-free hydrothermal synthesis of sub-10 nm γ-Fe2O3–polymer porous composites with high catalytic activity for reduction of nitroarenes. Chem. Commun. 2013, 49, 10088–10090.

    Article  Google Scholar 

  70. Nie, R. F.; Liang, D.; Shen, L.; Gao, J.; Chen, P.; Hou, Z.Y. Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles. Appl. Catal. B: Environ. 2012, 127, 212–220.

    Article  Google Scholar 

  71. Rauf, A.; Sher Shah, M. S. A.; Choi, G. H.; Humayoun, U. B.; Yoon, D. H.; Bae, J. W.; Park, J.; Kim, W. J.; Yoo, P. J. Facile Synthesis of hierarchically structured Bi2S3/Bi2WO6 photocatalysts for highly efficient reduction of Cr(VI). ACS SustainableChem. Eng. 2015, 3, 2847–2855.

    Article  Google Scholar 

  72. Feng, J.; Handa, S.; Gallou, F.; Lipshutz, B. H. Safe and selective nitro group reductions catalyzed by sustainable and recyclable Fe/ppm Pd nanoparticles in water at room temperature. Angew. Chem., Int. Ed. 2016, 55, 8979–8983.

    Article  Google Scholar 

  73. Sheng, T.; Qi, Y. J.; Lin, X.; Hu, P.; Sun, S. G.; Lin, W.F. Insights into the mechanism of nitrobenzene reduction to aniline over Pt catalyst and the significance of the adsorption of phenyl group on kinetics. Chem. Eng. J. 2016, 293, 337–344.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 21235004, 21175080) and the Ministry of Science and Technology (No. 2013ZX09507005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbin Sun or Qionglin Liang.

Electronic supplementary material

12274_2017_1631_MOESM1_ESM.pdf

Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Y., Hu, Z., Shao, Z. et al. Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor. Nano Res. 11, 287–299 (2018). https://doi.org/10.1007/s12274-017-1631-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1631-2

Keywords

Navigation