Skip to main content
Log in

Spatial control of palladium nanoparticles in flexible click-based porous organic polymers for hydrogenation of olefins and nitrobenzene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two flexible click-based porous organic polymers (CPP-F1 and CPP-F2) have been readily synthesized. SEM images show CPP-F1 is a 3D network, while CPP-F2 exhibits a granular morphology. Pd(OAc)2 can be easily incorporated into CPP-F1 and CPP-F2 to form Pd@CPP-F1 and Pd@CPP-F2, respectively. The interactions between the polymers and palladium are confirmed by solid-state 13C NMR, IR and XPS. Palladium nanoparticles (NPs) are formed after hydrogenation of olefins and nitrobenzene. Palladium NPs in CPP-F1 are well dispersed on the external surface of the polymer, while palladium NPs in CPP-F2 are located in the interior pores and on the external surface. In comparison with NPs in CPP-F1, the dual distribution of palladium NPs in CPP-F2 results in higher selectivity in the hydrogenation of 1,3-cyclohexadiene to cyclohexane. The catalytic systems can be recycled several times without obvious loss of catalytic activity or agglomeration of palladium NPs. Hot filtration, mercury drop tests and ICP analyses suggest that the catalytic systems proceed via a heterogeneous pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

    Article  Google Scholar 

  2. Xiang, Z. H.; Cao, D. P. Porous covalent-organic materials: Synthesis, clean energy application and design. J. Mater. Chem. A 2013, 1, 2691–2718.

    Article  Google Scholar 

  3. Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2012, 37, 530–563.

    Article  Google Scholar 

  4. Li, Y.; Fu, Z. Y.; Su, B. L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634–4667.

    Article  Google Scholar 

  5. Yuan, Y.; Sun, F. X.; Zhang, F.; Ren, H.; Guo, M. Y.; Cai, K.; Jing, X. F.; Gao, X.; Zhu, G. S. Targeted synthesis of porous aromatic frameworks and their composites for versatile, facile, efficacious, and durable antibacterial polymer coatings. Adv. Mater. 2013, 25, 6619–6624.

    Article  Google Scholar 

  6. Patel, H. A.; Karadas, F.; Byun, J.; Park, J.; Deniz, E.; Canlier, A.; Jung, Y.; Atilhan, M.; Yavuz, C. T. Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal. Adv. Funct. Mater. 2013, 23, 2270–2276.

    Article  Google Scholar 

  7. Zhang, P.; Weng, Z. H.; Guo, J.; Wang, C. C. Solution-dispersible, colloidal, conjugated porous polymer networks with entrapped palladium nanocrystals for heterogeneous catalysis of the Suzuki-Miyaura coupling reaction. Chem. Mater. 2011, 23, 5243–5249.

    Article  Google Scholar 

  8. Xie, Z. G.; Wang, C.; deKrafft, K. E.; Lin, W. B. Highly stable and porous cross-linked polymers for efficient photocatalysis. J. Am. Chem. Soc. 2011, 133, 2056–2059.

    Article  Google Scholar 

  9. Chen, L.; Yang, Y.; Jiang, D. L. CMPs as scaffolds for constructing porous catalytic frameworks: A built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 2010, 132, 9138–9143.

    Article  Google Scholar 

  10. Ma, H. P.; Ren, H.; Meng, S.; Sun, F. X.; Zhu, G. S. Novel porphyrinic porous organic frameworks for high performance separation of small hydrocarbons. Sci. Rep. 2013, 3, 2611.

    Google Scholar 

  11. Zou, X. Q.; Ren, H.; Zhu, G. S. Topology-directed design of porous organic frameworks and their advanced applications. Chem. Commun. 2013, 49, 3925–3936.

    Article  Google Scholar 

  12. Kaur, P.; Hupp, J. T.; Nguyen, S. T. Porous organic polymers in catalysis: Opportunities and challenges. ACS Catal. 2011, 1, 819–835.

    Article  Google Scholar 

  13. Ma, H. P.; Ren, H.; Zou, X. Q.; Meng, S.; Sun, F. X.; Zhu, G. S. Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures. Polym. Chem. 2014, 5, 144–152.

    Article  Google Scholar 

  14. Bleschke, C.; Schmidt, J.; Kundu, D. S.; Blechert, S.; Thomas, A. A chiral microporous polymer network as asymmetric heterogeneous organocatalyst. Adv. Synth. Catal. 2011, 353, 3101–3106.

    Article  Google Scholar 

  15. Verde-Sesto, E.; Pintado-Sierra, M.; Corma, A.; Maya, E. M.; de la Campa, J. G.; Iglesias, M.; Sánchez, F. First prefunctionalised polymeric aromatic framework from mononitrotetrakis(iodophenyl)methane and its applications. Chem. Eur. J. 2014, 20, 5111–5120.

    Article  Google Scholar 

  16. Saha, B.; Gupta, D.; Abu-Omar, M. M.; Modak, A.; Bhaumik, A. Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid. J. Catal. 2013, 299, 316–320.

    Article  Google Scholar 

  17. Zhang, Y. G.; Riduan, S. N. Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 2012, 41, 2083–2094.

    Article  Google Scholar 

  18. Totten, R. K.; Weston, M. H.; Park, J. K.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Catalytic solvolytic and hydrolytic degradation of toxic methyl paraoxon with La(catecholate)-functionalized porous organic polymers. ACS Catal. 2013, 3, 1454–1459.

    Article  Google Scholar 

  19. Xie, Y.; Wang, T. T.; Liu, X. H.; Zou, K.; Deng, W. Q. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat. Commun. 2013, 4, 1960.

    Article  Google Scholar 

  20. Li, Y. Q.; Ben, T.; Zhang, B. Y.; Fu, Y.; Qiu, S. L. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks. Sci. Rep. 2013, 3, 2420.

    Google Scholar 

  21. Zhang, Q.; Zhang, S. B.; Li, S. H. Novel functional organic network containing quaternary phosphonium and tertiary phosphorus. Macromolecules 2012, 45, 2981–2988.

    Article  Google Scholar 

  22. Ren, S. J.; Dawson, R.; Laybourn, A.; Jiang, J. X.; Khimyak, Y.; Adams, D. J.; Cooper, A. I. Functional conjugated microporous polymers: From 1,3,5-benzene to 1,3,5-triazine. Polym. Chem. 2012, 3, 928–934.

    Article  Google Scholar 

  23. Zhao, Y. C.; Zhang, L. M.; Wang, T.; Han, B. H. Microporous organic polymers with acetal linkages: Synthesis, characterization, and gas sorption properties. Polym. Chem. 2014, 5, 614–621.

    Article  Google Scholar 

  24. Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.

    Article  Google Scholar 

  25. Jin, S. B.; Sakurai, T.; Kowalczyk, T.; Dalapati, S.; Xu, F.; Wei, H.; Chen, X.; Gao, J.; Seki, S.; Irle, S. et al. Two-dimensional tetrathiafulvalene covalent organic frameworks: Towards latticed conductive organic salts. Chem. Eur. J., in press, DOI: 10.1002/chem.201402844.

  26. Budd, P. M. Putting order into polymer networks. Science 2007, 316, 210–211.

    Article  Google Scholar 

  27. Li, Z. L.; Liu, J. H.; Huang, Z. W.; Yang, Y.; Xia, C. G.; Li, F. W. One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation. ACS Catal. 2013, 3, 839–845.

    Article  Google Scholar 

  28. Liang, M.; Su, R. X.; Huang, R. L.; Qi, W.; Yu, Y. J.; Wang, L. B.; He, Z. M. Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 4638–4649.

    Article  Google Scholar 

  29. Song, F. J.; Wang, C.; Falkowski, J. M.; Ma, L. Q.; Lin, W. B. Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: Tuning catalytic activity by controlling framework catenation and varying open channel sizes. J. Am. Chem. Soc. 2010, 132, 15390–15398.

    Article  Google Scholar 

  30. Rao, K. V.; Mohapatra, S.; Maji, T. K.; George, S. J. Guest-responsive reversible swelling and enhanced fluorescence in a super-absorbent, dynamic microporous polymer. Chem. Eur. J. 2012, 18, 4505–4509.

    Article  Google Scholar 

  31. Suresh, V. M.; Bonakala, S.; Atreya, H. S.; Balasubramanian, S.; Maji, T. K. Amide functionalized microporous organic polymer (Am-MOP) for selective CO2 sorption and catalysis. ACS Appl. Mater. Interfaces 2014, 6, 4630–4637.

    Article  Google Scholar 

  32. Liang, L. Y.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 2011, 255, 2933–2945.

    Article  Google Scholar 

  33. Barner-Kowollik, C.; Du Prez, F. E.; Espeel, P.; Hawker, C. J.; Junkers, T.; Schlaad, H.; Van Camp, W. “Clicking” polymers or just efficient linking: What is the difference? Angew. Chem., Int. Ed. 2011, 50, 60–62.

    Article  Google Scholar 

  34. Janreddy, D.; Kavala, V.; Kuo, C. W.; Chen, W. C.; Ramesh, C.; Kotipalli, T.; Kuo, T. S.; Chen, M. L.; He, C. H.; Yao, C. F. Copper(I)-catalyzed aerobic oxidative azide-alkene cycloaddition: An efficient synthesis of substituted 1,2,3-triazoles. Adv. Synth. Catal. 2013, 355, 2918–2927.

    Article  Google Scholar 

  35. Crowley, J. D.; Gavey, E. L. Use of di-1,4-substituted-1,2,3-triazole “click” ligands to self-assemble dipalladium(II) coordinatively saturated, quadruply stranded helicate cages. Dalton Trans. 2010, 39, 4035–4037.

    Article  Google Scholar 

  36. Juríček, M.; Felici, M.; Contreras-Carballada, P.; Lauko, J.; Bou, S. R.; Kouwer, P. H. J.; Brouwer, A. M.; Rowan, A. E. Triazole-pyridine ligands: A novel approach to chromophoric iridium arrays. J. Mater. Chem. 2011, 21, 2104–2111.

    Article  Google Scholar 

  37. Fleischel, O.; Wu, N.; Petitjean, A. Click-triazole: Coordination of 2-(1,2,3-triazol-4-yl)-pyridine to cations of traditional tetrahedral geometry (Cu(I), Ag(I)). Chem. Commun. 2010, 46, 8454–8456.

    Article  Google Scholar 

  38. Wang, D.; Denux, D.; Ruiz, J.; Astruc, D. The clicked pyridyl-triazole ligand: From homogeneous to robust, recyclable heterogeneous mono- and polymetallic palladium catalysts for efficient Suzuki-Miyaura, Sonogashira, and Heck reactions. Adv. Synth. Catal. 2013, 355, 129–142.

    Article  Google Scholar 

  39. Deraedt, C.; Salmon, L.; Ruiz, J.; Astruc, D. Efficient click-polymer-stabilized palladium nanoparticle catalysts for Suzuki-Miyaura reactions of bromoarenes and reduction of 4-nitrophenol in aqueous solvents. Adv. Synth. Catal. 2013, 355, 2992–3001.

    Article  Google Scholar 

  40. Zhao, D.; Tan, S. W.; Yuan, D. Q.; Lu, W. G.; Rezenom, Y. H.; Jiang, H. L.; Wang, L. Q.; Zhou, H. C. Surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery. Adv. Mater. 2011, 23, 90–93.

    Article  Google Scholar 

  41. Lucon, J.; Abedin, M. J.; Uchida, M.; Liepold, L.; Jolley, C. C.; Young, M.; Douglas, T. A click chemistry based coordination polymer inside small heat shock protein. Chem. Commun. 2010, 46, 264–266.

    Article  Google Scholar 

  42. El-Sagheer, A. H.; Brown, T. Click nucleic acid ligation: Applications in biology and nanotechnology. Acc. Chem. Res. 2012, 45, 1258–1267.

    Article  Google Scholar 

  43. Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 2013, 113, 4905–4979.

    Article  Google Scholar 

  44. Pandey, P.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. A “click-based” porous organic polymer from tetrahedral building blocks. J. Mater. Chem. 2011, 21, 1700–1703.

    Article  Google Scholar 

  45. Holst, J. R.; Stöckel, E.; Adams, D. J.; Cooper, A. I. High surface area networks from tetrahedral monomers: Metal-catalyzed coupling, thermal polymerization, and “click” chemistry. Macromolecules 2010, 43, 8531–8538.

    Article  Google Scholar 

  46. Plietzsch, O.; Schilling, C. I.; Grab, T.; Grage, S. L.; Ulrich, A. S.; Comotti, A.; Sozzani, P.; Muller, T.; Bräse, S. Click chemistry produces hyper-cross-linked polymers with tetrahedral cores. New J. Chem. 2011, 35, 1577–1581.

    Article  Google Scholar 

  47. Xie, L. H.; Suh, M. P. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups. Chem. Eur. J. 2013, 19, 11590–11597.

    Article  Google Scholar 

  48. Li, L. Y.; Chen, Z. L.; Zhong, H.; Wang, R. H. Urea-based porous organic frameworks: Effective supports for catalysis in neat water. Chem. Eur. J. 2014, 20, 3050–3060.

    Article  Google Scholar 

  49. Li, L. Y.; Zhao, H. X.; Wang, J. Y.; Wang, R. H. Facile fabrication of ultrafine palladium nanoparticles with size- and location-control in click-based porous organic polymers. ACS Nano 2014, 8, 5352–5364.

    Article  Google Scholar 

  50. Thomas, J. R.; Liu, X. J.; Hergenrother, P. J. Size-specific ligands for RNA hairpin loops. J. Am. Chem. Soc. 2005, 127, 12434–12435.

    Article  Google Scholar 

  51. Leininger, S.; Stang, P. J.; Huang, S. P. Synthesis and characterization of organoplatinum dendrimers with 1,3,5-triethynylbenzene building blocks. Organometallics 1998, 17, 3981–3987.

    Article  Google Scholar 

  52. Yuan, S. W.; Kirklin, S.; Dorney, B.; Liu, D. J.; Yu, L. P. Nanoporous polymers containing stereocontorted cores for hydrogen storage. Macromolecules 2009, 42, 1554–1559.

    Article  Google Scholar 

  53. Ben, T.; Shi, K.; Cui, Y.; Pei, C. Y.; Zuo, Y.; Guo, H.; Zhang, D. L.; Xu, J.; Deng, F.; Tian, Z. Q. et al. Targeted synthesis of an electroactive organic framework. J. Mater. Chem. 2011, 21, 18208–18214.

    Article  Google Scholar 

  54. Roy, S. G.; Haldar, U.; De, P. Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium. ACS Appl. Mater. Interfaces 2014, 6, 4233–4241.

    Article  Google Scholar 

  55. Devadoss, A.; Chidsey, C. E. Azide-modified graphitic surfaces for covalent attachment of alkyne-terminated molecules by “click” chemistry. J. Am. Chem. Soc. 2007, 129, 5370–5371.

    Article  Google Scholar 

  56. Bebensee, F.; Bombis, C.; Vadapoo, S. R.; Cramer, J. R.; Besenbacher, F.; Gothelf, K. V.; Linderoth, T. R. On-surface azide-alkyne cycloaddition on Cu(111): Does it “click” in ultrahigh vacuum? J. Am. Chem. Soc. 2013, 135, 2136–2139.

    Article  Google Scholar 

  57. Kang, N.; Park, J. H.; Ko, K. C.; Chun, J.; Kim, E.; Shin, H. W.; Lee, S. M.; Kim, H. J.; Ahn, T. K.; Lee, J. Y. et al. Tandem synthesis of photoactive benzodifuran moieties in the formation of microporous organic networks. Angew. Chem. Int. Ed. 2013, 6228–6232.

    Google Scholar 

  58. Du, X.; Sun, Y. L.; Tan, B. E.; Teng, Q. F.; Yao, X. J.; Su, C. Y.; Wang, W. Tröger’s base-functionalised organic nanoporous polymer for heterogeneous catalysis. Chem. Commun. 2010, 46, 970–972.

    Article  Google Scholar 

  59. Ben, T.; Pei, C. Y.; Zhang, D. L.; Xu, J.; Deng, F.; Jing, X. F.; Qiu, S. L. Gas storage in porous aromatic frameworks (PAFs). Energy Environ. Sci. 2011, 4, 3991–3999.

    Article  Google Scholar 

  60. Moon, S. Y.; Jeon, E.; Bae, J. S.; Byeon, M.; Park, J. W. Polyurea networks via organic sol-gel crosslinking polymerization of tetrafunctional amines and diisocyanates and their selective adsorption and filtration of carbon dioxide. Polym. Chem. 2014, 5, 1124–1131.

    Article  Google Scholar 

  61. Rose, M.; Klein, N.; Böhlmann, W.; Böhringer, B.; Fichtner, S.; Kaskel, S. New element organic frameworks via Suzuki coupling with high adsorption capacity for hydrophobic molecules. Soft Matter 2010, 6, 3918–3923.

    Article  Google Scholar 

  62. Weber, J.; Schmidt, J.; Thomas, A.; Böhlmann, W. Micropore analysis of polymer networks by gas sorption and 129Xe nmr spectroscopy: Toward a better understanding of intrinsic microporosity. Langmuir 2010, 26, 15650–15656.

    Article  Google Scholar 

  63. Liang, Q.; Liu, J.; Wei, Y. C.; Zhao, Z.; MacLachlan, M. J. Palladium nanoparticles supported on a triptycene-based microporous polymer: Highly active catalysts for CO oxidation. Chem. Commun. 2013, 49, 8928–8930.

    Article  Google Scholar 

  64. Baerns, M. Basic principles in applied catalysis; Springer: Berlin, 2004.

    Book  Google Scholar 

  65. Ertl, G.; Knözinger, H.; Schuth, F.; Weitkamp, J. Handbook of heterogeneous catalysis; Wiley-VCH: Weinheim, 1997.

    Book  Google Scholar 

  66. Tew, M. W.; Janousch, M.; Huthwelker, T.; van Bokhoven, J. A. The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation. J. Catal. 2011, 283, 45–54.

    Article  Google Scholar 

  67. Hansen, T. W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc. Chem. Res. 2013, 46, 1720–1730.

    Article  Google Scholar 

  68. La Torre, A.; Giménez-Lopéz, M. D. C.; Fay, M. W.; Rance, G. A.; Solomonsz, W. A.; Chamberlain, T. W.; Brown, P. D.; Khlobystov, A. N. Assembly, growth, and catalytic activity of gold nanoparticles in hollow carbon nanofibers. ACS Nano 2012, 6, 2000–2007.

    Article  Google Scholar 

  69. Cárdenas-Lizana, F.; Berguerand, C.; Yuranov, I.; Kiwi-Minsker, L. Chemoselective hydrogenation of nitroarenes: Boosting nanoparticle efficiency by confinement within highly porous polymeric framework. J. Catal. 2013, 301, 103–111.

    Article  Google Scholar 

  70. Lamblin, M.; Nassar-Hardy, L.; Hierso, J. C.; Fouquet, E.; Felpin, F. X. Recyclable heterogeneous palladium catalysts in pure water: Sustainable developments in Suzuki, Heck, Sonogashira and Tsuji-Trost reactions. Adv. Synth. Catal. 2010, 352, 33–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihu Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhou, C., Zhao, H. et al. Spatial control of palladium nanoparticles in flexible click-based porous organic polymers for hydrogenation of olefins and nitrobenzene. Nano Res. 8, 709–721 (2015). https://doi.org/10.1007/s12274-014-0554-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0554-4

Keywords

Navigation