Skip to main content
Log in

Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Supported metal nanoparticles, M-NPs, are of great scientific and economic interest as they encompass application in chemical manufacturing, oil refining and environmental catalysis. Oxidation and hydrogenation reactions are among the major reactions catalyzed by supported M-NPs. Although supported M-NPs are preferable due to their easy recovery and reuse, there are still some practical issues regarding their catalytic activity and deactivation. This review highlights the general features of supported M-NPs as catalysts with particular attention to copper, gold, platinum, palladium, ruthenium, silver, cobalt and nickel and their catalytic evaluation in various reactions. The catalytic performance of noble M-NPs has been explored extensively in various selective oxidation and hydrogenation reactions. In general, noble metals are expensive and sensitive to poisons. Despite their significant merits and potential (easily available, comparatively inexpensive and less sensitive to poisons), catalysis by base M-NPs is relatively less explored. Therefore, activity of base M-NPs can be improved, and still, there is potential for such catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Adapted with permission from [28]

Figure 2
Figure 3
Figure 4
Figure 5

Reprinted with permission from [216]

Figure 6

Reprinted with permission from [241]

Figure 7
Figure 8
Figure 9
Figure 10

Reprinted with permission from [295]

Scheme 1

Adapted with permission from [10]

Figure 11
Scheme 2

Adapted with permission from [341]

Scheme 3

Reprinted with permission from [379]

Scheme 4

Reprinted with permission from [380]

Similar content being viewed by others

References

  1. Cuenya BR, Behafarid F (2015) Nanocatalysis: size-and shape-dependent chemisorption and catalytic reactivity. Surf Sci Rep 70:135–187

    Article  CAS  Google Scholar 

  2. Schlögl R, Abd Hamid SB (2004) Nanocatalysis: mature science revisited or something really new? Angew Chem Int Ed 43:1628–1637

    Article  CAS  Google Scholar 

  3. Monfared A, Mohammadi R, Ahmadi S, Nikpassand M, Hosseinian A (2019) Recent advances in the application of nano-catalysts for Hiyama cross-coupling reactions. RSC Adv 9:3185–3202

    Article  CAS  Google Scholar 

  4. Navalón S, García H (2016) Nanoparticles for catalysis. Nanomaterials 6:123

    Article  CAS  Google Scholar 

  5. Dimitratos N, Lopez-Sanchez JA, Hutchings GJ (2012) Selective liquid phase oxidation with supported metal nanoparticles. Chem Sci 3:20–44

    Article  CAS  Google Scholar 

  6. Astruc D (2008) Nanoparticles and catalysis. Wiley, New York

    Google Scholar 

  7. Shang L, Bian T, Zhang B, Zhang D, Wu L, Tung C, Yin Y, Zhang T (2014) Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew Chem 126:254–258

    Article  Google Scholar 

  8. Xia Y, Yang H, Campbell CT (2013) Nanoparticles for catalysis. Acc Chem Res 46:1671–1672

    Article  CAS  Google Scholar 

  9. Philippot K, Serp P (2013) Nanomaterials in catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  10. Albonetti S, Mazzoni R, Cavani F (2014) Homogeneous, heterogeneous and nanocatalysis. In: Cardona F, Parmeggiani C (eds) Transition metal catalysis in aerobic alcohol oxidation. Royal Society of Chemistry, Cambridge, pp 1–39

    Google Scholar 

  11. Choudhary VR, Dumbre DK, Bhargava SK (2009) Oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over nanogold supported on TiO2 and other transition and rare-earth metal oxides. Ind Eng Chem Res 48:9471–9478

    Article  CAS  Google Scholar 

  12. Albonetti S, Pasini T, Lolli A, Blosi M, Piccinini M, Dimitratos N, Lopez-Sanchez JA, Morgan DJ, Carley AF, Hutchings GJ (2012) Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold–copper catalysts prepared from preformed nanoparticles: effect of Au/Cu ratio. Catal Today 195:120–126

    Article  CAS  Google Scholar 

  13. Della Pina C, Falletta E, Rossi M (2008) Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst. J Catal 260:384–386

    Article  CAS  Google Scholar 

  14. Pritchard J, Kesavan L, Piccinini M, He Q, Tiruvalam R, Dimitratos N, Lopez-Sanchez JA, Carley AF, Edwards JK, Kiely CJ (2010) Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au–Pd catalysts prepared by sol immobilization. Langmuir 26:16568–16577

    Article  CAS  Google Scholar 

  15. Lippits MJ, Nieuwenhuys BE (2010) Direct conversion of ethanol into ethylene oxide on copper and silver nanoparticles: effect of addition of CeOx and Li2O. Catal Today 154:127–132

    Article  CAS  Google Scholar 

  16. Wang D, Astruc D (2015) The golden age of transfer hydrogenation. Chem Rev 115:6621–6686

    Article  CAS  Google Scholar 

  17. Simakova OA, Davis RJ, Murzin DY (2013) Selective hydrogenation reactions. In: Biomass process over gold catalysts. Springer Briefs in Molecular Science. Springer, Heidelberg, pp 39–40

  18. Liao F, Huang Y, Ge J, Zheng W, Tedsree K, Collier P, Hong X, Tsang SC (2011) Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 50:2162–2165

    Article  CAS  Google Scholar 

  19. Hou R (2017) Selective hydrogenation of 1,3-butadiene on Pd–Ni bimetallic catalyst: from model surfaces to supported catalysts. In: Catalytic and process study of the selective hydrogenation of acetylene and 1,3-butadiene. Springer theses. Springer, Singapore, pp 45–72

  20. Smith AM, Whyman R (2014) Review of methods for the catalytic hydrogenation of carboxamides. Chem Rev 114:5477–5510

    Article  CAS  Google Scholar 

  21. Pritchard J, Filonenko GA, van Putten R, Hensen EJM, Pidko EA (2015) Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chem Soc Rev 44:3808–3833

    Article  CAS  Google Scholar 

  22. Ouyang G, Wang CX, Yang GW (2009) Surface energy of nanostructural materials with negative curvature and related size effects. Chem Rev 109:4221–4247

    Article  CAS  Google Scholar 

  23. Schmid G (2004) Nanoparticles: from theory to application. Wiley-VCH, Weinheim

    Google Scholar 

  24. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  25. Thielbeer F, Donaldson K, Bradley M (2011) Zeta potential mediated reaction monitoring on nano and microparticles. Bioconjug Chem 22:144–150

    Article  CAS  Google Scholar 

  26. Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12:743–754

    Article  CAS  Google Scholar 

  27. Aiken JD III, Lin Y, Finke RG (1996) A perspective on nanocluster catalysis: polyoxoanion and (n-C4H9)4N + stabilized Ir(0) ~ 300 nanocluster ‘soluble heterogeneous catalysts’. J Mol Catal A Chem 114:29–51

    Article  Google Scholar 

  28. Antonels NC (2014) The evaluation of dendrimer encapsulated ruthenium nanoparticles, immobilised on silica, as catalysts in various catalytic reactions and the effect of ionic liquids on the catalytic activity. University of Johannesburg, Johannesburg

    Google Scholar 

  29. Belyakova OA, Slovokhotov YL (2003) Structures of large transition metal clusters. Russ Chem Bull 52:2299–2327

    Article  CAS  Google Scholar 

  30. Kidwai M (2010) Nanoparticles in green catalysis. In: Handbook of green chemistry. Online, Wiley Online Library, pp 81–92

  31. Toshima N (2003) In: Liz-Marzan LM, Kamat PV (eds) Nanoscale materials, vol 444. Kluwer Acad. Pub., London, pp 79–96

    Google Scholar 

  32. Thathagar MB, Beckers J, Rothenberg G (2002) Copper-catalyzed Suzuki cross-coupling using mixed nanocluster catalysts. J Am Chem Soc 124:11858–11859

    Article  CAS  Google Scholar 

  33. Calo V, Nacci A, Monopoli A, Ieva E, Cioffi N (2005) Copper bronze catalyzed heck reaction in ionic liquids. Org Lett 7:617–620

    Article  CAS  Google Scholar 

  34. Lipshutz BH, Taft BR (2006) Heterogeneous copper-in-charcoal-catalyzed click chemistry. Angew Chem Int Ed 45:8235–8238

    Article  CAS  Google Scholar 

  35. Jammi S, Sakthivel S, Rout L, Mukherjee T, Mandal S, Mitra R, Saha P, Punniyamurthy T (2009) CuO nanoparticles catalyzed C–N, C–O, and C–S cross-coupling reactions: scope and mechanism. J Org Chem 74:1971–1976

    Article  CAS  Google Scholar 

  36. Ranu BC, Dey R, Chatterjee T, Ahammed S (2012) Copper nanoparticle-catalyzed carbon–carbon and carbon–heteroatom bond formation with a greener perspective. Chemsuschem 5:22–44

    Article  CAS  Google Scholar 

  37. Mitsudome T, Mikami Y, Ebata K, Mizugaki T, Jitsukawa K, Kaneda K (2008) Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols. Chem Commun 39:4804–4806

    Article  CAS  Google Scholar 

  38. Ndolomingo MJ, Meijboom R (2015) Kinetic analysis of catalytic oxidation of methylene blue over γ-Al2O3 supported copper nanoparticles. Appl Catal A Gen 506:33–43

    Article  CAS  Google Scholar 

  39. Hutchings GJ, Haruta M (2005) A golden age of catalysis: a perspective. Appl Catal A Gen 291:2–5

    Article  CAS  Google Scholar 

  40. Haruta M (2005) Catalysis: gold rush. Nature 437:1098–1099

    Article  CAS  Google Scholar 

  41. Sermon PA, Bond GC, Wells PB (1979) Hydrogenation of alkenes over supported gold. J Chem Soc Faraday 1 Trans Phys Chem Condens Phases 75:385–394

    CAS  Google Scholar 

  42. Bond GC (1972) The catalytic properties of gold. Gold Bull 5:11–13

    Article  CAS  Google Scholar 

  43. Schwank J (1985) Gold in bimetallic catalysts. Gold Bull 18:2–10

    Article  CAS  Google Scholar 

  44. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  45. Hutchings GJ, Brust M, Schmidbaur H (2008) Gold—an introductory perspective. Chem Soc Rev 37:1759–1765

    Article  CAS  Google Scholar 

  46. Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334

    Article  CAS  Google Scholar 

  47. Hutchings GJ (1996) Catalysis: a golden future. Gold Bull 29:123–130

    Article  CAS  Google Scholar 

  48. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 C. Chem Lett 16:405–408

    Article  Google Scholar 

  49. Abad A, Concepción P, Corma A, García H (2005) A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem Int Ed 44:4066–4069

    Article  CAS  Google Scholar 

  50. Malta G, Kondrat SA, Freakley SJ, Davies CJ, Lu L, Dawson S, Thetford A, Gibson EK, Morgan DJ, Jones W (2017) Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355:1399–1403

    Article  CAS  Google Scholar 

  51. Hashmi ASK, Rudolph M (2008) Gold catalysis in total synthesis. Chem Soc Rev 37:1766–1775

    Article  CAS  Google Scholar 

  52. Marion N, Nolan SP (2008) N-Heterocyclic carbenes in gold catalysis. Chem Soc Rev 37:1776–1782

    Article  CAS  Google Scholar 

  53. Ndolomingo MJ, Meijboom R (2017) Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles. Appl Surf Sci 398:19–32

    Article  CAS  Google Scholar 

  54. Wang C, Daimon H, Onodera T, Koda T, Sun S (2008) A general approach to the size-and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew Chem Int. Ed 47:3588–3591

    Article  CAS  Google Scholar 

  55. Tan TL, Wang L-L, Zhang J, Johnson DD, Bai K (2015) Platinum nanoparticle during electrochemical hydrogen evolution: adsorbate distribution, active reaction species, and size effect. ACS Catal 5:2376–2383

    Article  CAS  Google Scholar 

  56. Ovejero G, Rodríguez A, Vallet A, García J (2011) Studies in catalytic wet air oxidation as a process to destroy CI Basic Yellow 11 in aqueous stream over platinum catalyst. Color Technol 127:10–17

    Article  CAS  Google Scholar 

  57. Gomes HT, Samant PV, Serp P, Kalck P, Figueiredo JL, Faria JL (2004) Carbon nanotubes and xerogels as supports of well-dispersed Pt catalysts for environmental applications. Appl Catal B Environ 54:175–182

    Article  CAS  Google Scholar 

  58. Daas BM, Ghosh S (2016) Fuel cell applications of chemically synthesized zeolite modified electrode (ZME) as catalyst for alcohol electro-oxidation—a review. J Electroanal Chem 783:308–315

    Article  CAS  Google Scholar 

  59. Lange J, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49:4479–4483

    Article  CAS  Google Scholar 

  60. Liu X, Guo Y, Xu W, Wang Y, Gong X, Guo Y, Guo Y, Lu G (2011) Catalytic properties of Pt/Al2O3 catalysts in the aqueous-phase reforming of ethylene glycol: effect of the alumina support. Kinet Catal 52:817–822

    Article  CAS  Google Scholar 

  61. Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68

    Article  CAS  Google Scholar 

  62. Bingwa N, Ndolomingo MJ, Noh J-H, Antonels N, Haumann M, Meijboom R (n.d) Synergistic effect of mesoporous transition metal oxides and Pt nanoparticles in aerobic oxidation of ethanol and ionic liquid induced selectivity. Manuscript under review

  63. Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Rüttinger R, Kojer H (1959) Katalytische Umsetzungen von Olefinen an Platinmetall-Verbindungen Das Consortium-Verfahren zur Herstellung von Acetaldehyd. Angew Chem 71:176–182

    Article  CAS  Google Scholar 

  64. Reddy CB, Bharti R, Kumar S, Das P (2016) Supported palladium nanoparticles-catalyzed decarboxylative coupling approaches to aryl alkynes, indoles and pyrrolines synthesis. RSC Adv. 6:71117–71121

    Article  CAS  Google Scholar 

  65. Kumar S, Chaudhary A, Bhattacherjee D, Thakur V, Das P (2017) Supported palladium nanoparticles as switchable catalyst for aldehyde conjugate/s and acetate ester syntheses from alcohols. New J Chem 41:3242–3245

    Article  CAS  Google Scholar 

  66. Shiju NR, Guliants VV (2009) Recent developments in catalysis using nanostructured materials. Appl Catal A Gen 356:1–17

    Article  CAS  Google Scholar 

  67. Shah D, Kaur H (2016) Supported palladium nanoparticles: a general sustainable catalyst for microwave enhanced carbon-carbon coupling reactions. J Mol Catal A Chem 424:171–180

    Article  CAS  Google Scholar 

  68. Ncube P, Hlabathe T, Meijboom R (2015) Palladium nanoparticles supported on mesoporous silica as efficient and recyclable heterogenous nanocatalysts for the Suzuki C–C coupling reaction. J Clust Sci 26:1873–1888

    Article  CAS  Google Scholar 

  69. Iqbal S, Kondrat SA, Jones DR, Schoenmakers DC, Edwards JK, Lu L, Yeo BR, Wells PP, Gibson EK, Morgan DJ (2015) Ruthenium nanoparticles supported on carbon: an active catalyst for the hydrogenation of lactic acid to 1, 2-propanediol. ACS Catal 5:5047–5059

    Article  CAS  Google Scholar 

  70. Tan J, Cui J, Cui X, Deng T, Li X, Zhu Y, Li Y (2015) Graphene-modified Ru nanocatalyst for low-temperature hydrogenation of carbonyl groups. ACS Catal 5:7379–7384

    Article  CAS  Google Scholar 

  71. Sun J, Li X, Taguchi A, Abe T, Niu W, Lu P, Yoneyama Y, Tsubaki N (2013) Highly-dispersed metallic Ru nanoparticles sputtered on H-beta zeolite for directly converting syngas to middle isoparaffins. ACS Catal 4:1–8

    Article  CAS  Google Scholar 

  72. Manzer LE (2004) Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer. Appl Catal A Gen 272:249–256

    Article  CAS  Google Scholar 

  73. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  74. Protsenko II, Nikoshvili LZ, Matveeva VG, Sulman EM, Rebrov E (2016) Selective hydrogenation of levulinic acid to gamma-valerolactone using polymer-based ru-containing catalysts. Chem Eng Trans 52:679–684

    Google Scholar 

  75. Frohning CD, Kölbel H, Ralek M, Rottig W, Schnur F, Schulz H (1977) Fischer–Tropsch synthese. In: Falbe J (ed) Chemierohstoffe Aus Kohle, pp 218–219

  76. Vannice MA (1975) The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: III. Metal–support effects with Pt and Pd catalysts. J Catal 40:129–134

    Article  CAS  Google Scholar 

  77. Kitano M, Kanbara S, Inoue Y, Kuganathan N, Sushko PV, Yokoyama T, Hara M, Hosono H (2015) Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat Commun 6:6731

    Article  CAS  Google Scholar 

  78. Ndolomingo MJ, Meijboom R (2019) Noble and base-metal nanoparticles supported on mesoporous metal oxides: efficient catalysts for the selective hydrogenation of levulinic acid to γ-valerolactone. Catal Lett 149:2807–2822

    Article  CAS  Google Scholar 

  79. Sun Y (2013) Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem Soc Rev 42:2497–2511

    Article  CAS  Google Scholar 

  80. Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518

    Article  CAS  Google Scholar 

  81. Dong XY, Gao ZW, Yang KF, Zhang WQ, Xu LW (2015) Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal Sci Technol 5:2554–2574

    Article  CAS  Google Scholar 

  82. Gawande MB, Guo H, Rathi AK, Branco PS, Chen Y, Varma RS, Peng D-L (2013) First application of core-shell Ag@ Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds. RSC Adv 3:1050–1054

    Article  CAS  Google Scholar 

  83. Bingwa N, Meijboom R (2015) Evaluation of catalytic activity of Ag and Au dendrimer-encapsulated nanoparticles in the reduction of 4-nitrophenol. J Mol Catal A Chem 396:1–7

    Article  CAS  Google Scholar 

  84. Chaki NK, Tsunoyama H, Negishi Y, Sakurai H, Tsukuda T (2007) Effect of Ag-doping on the catalytic activity of polymer-stabilized Au clusters in aerobic oxidation of alcohol. J Phys Chem C 111:4885–4888

    Article  CAS  Google Scholar 

  85. Nemanashi-Maumela M, Nongwe I, Motene RC, Davids BL, Meijboom R (2017) Au and Ag nanoparticles encapsulated within silica nanospheres using dendrimers as dual templating agent and their catalytic activity. Mol Catal 438:184–196

    Article  CAS  Google Scholar 

  86. Guo JZ, Cui H, Zhou W, Wang W (2008) Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photochem Photobiol A Chem 193:89–96

    Article  CAS  Google Scholar 

  87. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  88. van Deelen TW, Nijhuis JJ, Krans NA, Zečević J, de Jong KP (2018) Preparation of Cobalt nanocrystals supported on metal oxides to study particle growth in Fischer–Tropsch catalysts. ACS Catal 8:10581–10589

    Article  CAS  Google Scholar 

  89. Sadek R, Chalupka KA, Mierczynski P, Rynkowski J, Gurgul J, Dzwigaj S (2019) Cobalt based catalysts supported on two kinds of beta zeolite for application in Fischer–Tropsch synthesis. Catalysts 9:497

    Article  CAS  Google Scholar 

  90. Hertrich MF, Scharnagl FK, Pews-Davtyan A, Kreyenschulte CR, Lund H, Bartling S, Jackstell R, Beller M (2019) Supported cobalt nanoparticles for hydroformylation reactions. Chem Eur J 25:5534–5538

    Article  CAS  Google Scholar 

  91. Bingwa N, Ndolomingo MJ, Mabate T, Dube S, Meijboom R (2019) Surface property–activity relations of Co/Sn oxide nanocatalysts evaluated using a model reaction: surface characterization study. Catal Lett 149:2940–2949

    Article  CAS  Google Scholar 

  92. Seo S, Perez GA, Tewari K, Comas X, Kim M (2018) Catalytic activity of nickel nanoparticles stabilized by adsorbing polymers for enhanced carbon sequestration. Sci Rep 8(11786):1–11

    Google Scholar 

  93. Seo S, Nguyen M, Mastiani M, Navarrete G, Kim M (2017) Microbubbles loaded with nickel nanoparticles: a perspective for carbon sequestration. Anal Chem 89:10827–10833

    Article  CAS  Google Scholar 

  94. Bhaduri GA, Šiller L (2013) Nickel nanoparticles catalyse reversible hydration of carbon dioxide for mineralization carbon capture and storage. Catal Sci Technol 3:1234–1239

    Article  CAS  Google Scholar 

  95. Khurana JM, Vij K (2012) Nickel nanoparticles: a highly efficient catalyst for one pot synthesis of tetraketones and biscoumarins. J Chem Sci 124:907–912

    Article  CAS  Google Scholar 

  96. Kamata H, Tian ZQ, Izumi Y, Choong CKS, Chang J, Schreyer M, Chen L, Borgna A (2018) Dispersed and high loading Ni catalyst stabilized in porous SiO2 matrix for substituted natural gas production. Catal Today 299:193–200

    Article  CAS  Google Scholar 

  97. Li S, Tang H, Gong D, Ma Z, Liu Y (2017) Loading Ni/La2O3 on SiO2 for CO methanation from syngas. Catal Today 297:298–307

    Article  CAS  Google Scholar 

  98. Naito M, Yokoyama T, Hosokawa K, Nogi K (2018) Nanoparticle technology handbook. Elsevier, Amsterdam

    Google Scholar 

  99. Merkel TJ, Herlihy KP, Nunes J, Orgel RM, Rolland JP, DeSimone JM (2009) Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 26:13086–13096

    Article  CAS  Google Scholar 

  100. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  CAS  Google Scholar 

  101. Peng Z, Yang H (2009) Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4:143–164

    Article  CAS  Google Scholar 

  102. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  103. Dupont J, Scholten JD (2010) On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev 39:1780–1804

    Article  CAS  Google Scholar 

  104. Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:1–11

    Article  CAS  Google Scholar 

  105. Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735

    Article  CAS  Google Scholar 

  106. Hori K, Matsune H, Takenaka S, Kishida M (2006) Preparation of silica-coated Pt metal nanoparticles using microemulsion and their catalytic performance. Sci Technol Adv Mater 7:678–684

    Article  CAS  Google Scholar 

  107. He L, Lin Q, Liu Y, Huang Y (2014) Unique catalysis of Ni–Al hydrotalcite derived catalyst in CO2 methanation: cooperative effect between Ni nanoparticles and a basic support. J Energy Chem 23:587–592

    Article  Google Scholar 

  108. Peng X, Cheng K, Kang J, Gu B, Yu X, Zhang Q, Wang Y (2015) Impact of hydrogenolysis on the selectivity of the Fischer–Tropsch synthesis: diesel fuel production over mesoporous Zeolite-Y-supported cobalt nanoparticles. Angew Chem Int Ed 54:4553–4556

    Article  CAS  Google Scholar 

  109. Cheng D, Jin W, Zhan X, Chen F (2016) Alumina membrane coated activated carbon: a novel strategy to enhance the mechanical properties of a solid catalyst. RSC Adv. 6:10229–10232

    Article  CAS  Google Scholar 

  110. Raybaud P, Chizallet C, Mager-Maury C, Digne M, Toulhoat H, Sautet P (2013) From γ-alumina to supported platinum nanoclusters in reforming conditions: 10 years of DFT modeling and beyond. J Catal 308:328–340

    Article  CAS  Google Scholar 

  111. Bagheri S, Muhd Julkapli N, Bee Abd Hamid S (2014) Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci World J 2014:1–21. https://doi.org/10.1155/2014/727496

    Article  CAS  Google Scholar 

  112. Ntais S, Isaifan RJ, Baranova EA (2014) An X-ray photoelectron spectroscopy study of platinum nanoparticles on yttria-stabilized zirconia ionic support: insight into metal support interaction. Mater Chem Phys 148:673–679

    Article  CAS  Google Scholar 

  113. Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2004) Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J Am Chem Soc 126:10657–10666

    Article  CAS  Google Scholar 

  114. Kantam ML, Chakravarti R, Pal U, Sreedhar B, Bhargava S (2008) nanocrystalline magnesium oxide-stabilized palladium (0): an efficient and reusable catalyst for selective reduction of nitro compounds. Adv Synth Catal 350:822–827

    Article  CAS  Google Scholar 

  115. Wang LC, Liu Y-M, Chen M, Cao Y, He H-Y, Fan K-N (2008) MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. J Phys Chem C 112:6981–6987

    Article  CAS  Google Scholar 

  116. Wu H, Wang L, Zhang J, Shen Z, Zhao J (2011) Catalytic oxidation of benzene, toluene and p-xylene over colloidal gold supported on zinc oxide catalyst. Catal Commun 12:859–865

    Article  CAS  Google Scholar 

  117. Yamada Y, Yano K, Xu Q, Fukuzumi S (2010) Cu/Co3O4 nanoparticles as catalysts for hydrogen evolution from ammonia borane by hydrolysis. J Phys Chem C 114:16456–16462

    Article  CAS  Google Scholar 

  118. Pérez-Mayoral E, Calvino-Casilda V, Soriano E (2016) Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products. Catal Sci Technol 6:1265–1291

    Article  Google Scholar 

  119. Haber J, Block JH, Delmon B (1995) Manual of methods and procedures for catalyst characterization (Technical Report). Pure Appl Chem 67(1995):1257–1306

    Article  Google Scholar 

  120. Poncelet G, Martens J, Delmon B, Grange P, Jacobs PA (1995) Preparation of catalysts VI: scientific bases for the preparation of heterogeneous catalysts. Elsevier, Amsterdam

    Google Scholar 

  121. Ertl G, Knà H, Weitkamp J (2008) Preparation of solid catalysts. Wiley, New York

    Google Scholar 

  122. Qiu S, Zhang X, Liu Q, Wang T, Zhang Q, Ma L (2013) A simple method to prepare highly active and dispersed Ni/MCM-41 catalysts by co-impregnation. Catal Commun 42:73–78

    Article  CAS  Google Scholar 

  123. Del Angel G, Bonilla A, Pena Y, Navarrete J, Fierro JLG, Acosta DR (2003) Effect of lanthanum on the catalytic properties of PtSn/γ-Al2O3 bimetallic catalysts prepared by successive impregnation and controlled surface reaction. J Catal 219:63–73

    Article  CAS  Google Scholar 

  124. Agnihotry SA, Sharma N, Deepa M (2002) Ion exchange derived precursor materials for deposition of WO3 electrochromic films: spectroscopic investigations. J Sol-Gel Sci Technol 24:265–270

    Article  CAS  Google Scholar 

  125. Jones AC, Hitchman ML (2009) Chemical vapour deposition: precursors, processes and applications. Royal Society of Chemistry, Cambridge

    Google Scholar 

  126. Schüth F, Hesse M, Unger KK (2008) In: Rostrup-Nielsen JR, Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, pp 100–109

  127. Rochas C, Rinaudo M (1984) Mechanism of gel formation in κ-carrageenan. Biopolym Orig Res Biomol 23:735–745

    CAS  Google Scholar 

  128. Murzin D (2013) Engineering catalysis. Walter de Gruyter, Berlin

    Book  Google Scholar 

  129. Taghvaei H, Heravi M, Rahimpour MR (2017) Synthesis of supported nanocatalysts via novel non-thermal plasma methods and its application in catalytic processes. Plasma Process Polym 14(1600204):1–20

    Google Scholar 

  130. Di L, Zhang J, Zhang X (2018) A review on the recent progress, challenges, and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts. Plasma Process Polym 15(1700234):1–19

    Google Scholar 

  131. Wang W, Wang Z, Wang J, Zhong C, Liu C (2017) Highly active and stable Pt–Pd alloy catalysts synthesized by room-temperature electron reduction for oxygen reduction reaction. Adv Sci 4:1600486-1–1600486-9

    Google Scholar 

  132. Wang X, Xu W, Liu N, Yu Z, Li Y, Qiu J (2015) Synthesis of metallic Ni–Co/graphene catalysts with enhanced hydrodesulfurization activity via a low-temperature plasma approach. Catal Today 256:203–208

    Article  CAS  Google Scholar 

  133. Kozhevin VM, Yavsin DA, Kouznetsov VM, Busov VM, Mikushkin VM, Nikonov SY, Gurevich SA, Kolobov A (2000) Granulated metal nanostructure deposited by laser ablation accompanied by cascade drop fission. J Vac Sci Technol B Microelectron Nanom Struct Process Meas Phenom 18:1402–1405

    Article  CAS  Google Scholar 

  134. Lokteva ES, Golubina EV (2019) Metal–support interactions in the design of heterogeneous catalysts for redox processes. Pure Appl Chem 91:609–631

    Article  CAS  Google Scholar 

  135. Rostovshchikova TN, Lokteva ES, Kavalerskaya NE, Gurevich SA, Kozhevin VM, Yavsin DA (2013) Surface density of particles in the design of nanostructured catalysts. Theor Exp Chem 49:40–45

    Article  CAS  Google Scholar 

  136. Zhu Q-L, Xu Q (2016) Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chemistry 1:220–245

    Article  CAS  Google Scholar 

  137. Zhu Q-L, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43:5468–5512

    Article  CAS  Google Scholar 

  138. Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem Chem Sustain Energy Mater 2:18–45

    CAS  Google Scholar 

  139. Zhong H, Liu C, Wang Y, Wang R, Hong M (2016) Tailor-made porosities of fluorene-based porous organic frameworks for the pre-designable fabrication of palladium nanoparticles with size, location and distribution control. Chem Sci 7:2188–2194

    Article  CAS  Google Scholar 

  140. Aijaz A, Karkamkar A, Choi YJ, Tsumori N, Rönnebro E, Autrey T, Shioyama H, Xu Q (2012) Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: a double solvents approach. J Am Chem Soc 134:13926–13929

    Article  CAS  Google Scholar 

  141. Chen Y, Zhu Q-L, Tsumori N, Xu Q (2015) Immobilizing highly catalytically active noble metal nanoparticles on reduced graphene oxide: a non-noble metal sacrificial approach. J Am Chem Soc 137:106–109

    Article  CAS  Google Scholar 

  142. Zhu Q-L, Tsumori N, Xu Q (2015) Immobilizing extremely catalytically active palladium nanoparticles to carbon nanospheres: a weakly-capping growth approach. J Am Chem Soc 137:11743–11748

    Article  CAS  Google Scholar 

  143. Maciver DS, Tobin HH, Barth RT (1963) Catalytic aluminas I. Surface chemistry of eta and gamma alumina. J Catal 2:485–497

    Article  CAS  Google Scholar 

  144. Rozita Y, Brydson R, Scott AJ (2010) An investigation of commercial gamma-Al2O3 nanoparticles. J Phys Conf Ser 241:12096-1–12096-4

    Article  CAS  Google Scholar 

  145. Krokidis X, Raybaud P, Gobichon AE, Rebours B, Euzen P, Toulhoat H (2001) Theoretical study of the dehydration process of boehmite to γ-alumina. J Phys Chem B 105:5121–5130

    Article  CAS  Google Scholar 

  146. Lippens BC, De Boer JH (1964) Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffraction. Acta Crystallogr 17:1312–1321

    Article  CAS  Google Scholar 

  147. Vaezifar S, Faghihian H, Kamali M (2008) The influence of alumina used as a support on the catalytic properties of Pt/Sn/Al2O3 systems in the dehydrogenation of isobutane. J Iran Chem Res 1:19–24

    Google Scholar 

  148. Levin I, Bendersky LA, Brandon DG, Rühle M (1997) Cubic to monoclinic phase transformations in alumina. Acta Mater 45:3659–3669

    Article  CAS  Google Scholar 

  149. Halvarsson M (2016) CVD alumina. http://fy.chalmers.se/~f10mh/Halvarsson/CVD_alumina.html. Accessed 22 June 2016

  150. Ndolomingo MJ, Meijboom R (2016) Kinetics of the catalytic oxidation of morin on γ-Al2O3 supported gold nanoparticles and determination of gold nanoparticles surface area and sizes by quantitative ligand adsorption. Appl Catal B Environ 199:142–154

    Article  CAS  Google Scholar 

  151. Lippits MJ, Nieuwenhuys BE (2010) Direct conversion of ethanol into ethylene oxide on gold-based catalysts: effect of CeOx and Li2O addition on the selectivity. J Catal 274:142–149

    Article  CAS  Google Scholar 

  152. Trewyn BG, Nieweg JA, Zhao Y, Lin VS-Y (2008) Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration. Chem Eng J 137:23–29

    Article  CAS  Google Scholar 

  153. Nandiyanto ABD, Kim S-G, Iskandar F, Okuyama K (2009) Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous Mesoporous Mater 120:447–453

    Article  CAS  Google Scholar 

  154. Vunain E, Ncube P, Jalama K, Meijboom R (2018) Confinement effect of rhodium(I) complex species on mesoporous MCM-41 and SBA-15: effect of pore size on the hydroformylation of 1-octene. J Porous Mater 25:303–320

    Article  CAS  Google Scholar 

  155. Xu J, Li K, Shi W, Li R, Peng T (2014) Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. J Power Sources 260:233–242

    Article  CAS  Google Scholar 

  156. Ruppert AM, Grams J, Jędrzejczyk M, Matras-Michalska J, Keller N, Ostojska K, Sautet P (2015) Titania-supported catalysts for levulinic acid hydrogenation: influence of support and its impact on γ-valerolactone yield. Chemsuschem 8:1538–1547

    Article  CAS  Google Scholar 

  157. Dai H (2001) Carbon nanotubes: synthesis, structure, properties, and applications. In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Topics in applied physics, vol 80. Springer, pp 29–54

  158. Ravat V, Nongwe I, Meijboom R, Bepete G, Coville NJ (2013) Pd on boron-doped hollow carbon spheres–PdO particle size and support effects. J Catal 305:36–45

    Article  CAS  Google Scholar 

  159. Lam E, Luong JHT (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4:3393–3410

    Article  CAS  Google Scholar 

  160. Gluhoi AC, Bogdanchikova N, Nieuwenhuys BE (2005) The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria. J Catal 229:154–162

    Article  CAS  Google Scholar 

  161. Lippits MJ (201) Catalytic behavior of Cu, Ag and Au nanoparticles. A comparison

  162. Lee J-K, Kung MC, Kung HH (2008) Cooperative catalysis: a new development in heterogeneous catalysis. Top Catal 49:136–144

    Article  CAS  Google Scholar 

  163. Lippits MJ, Gluhoi AC, Nieuwenhuys BE (2007) A comparative study of the effect of addition of CeOx and Li2O on γ-Al2O3 supported copper, silver and gold catalysts in the preferential oxidation of CO. Top Catal 44:159–165

    Article  CAS  Google Scholar 

  164. Gluhoi AC, Lin SD, Nieuwenhuys BE (2004) The beneficial effect of the addition of base metal oxides to gold catalysts on reactions relevant to air pollution abatement. Catal Today 90:175–181

    Article  CAS  Google Scholar 

  165. Gluhoi AC, Bogdanchikova N, Nieuwenhuys BE (2005) Alkali (earth)-doped Au/Al2O3 catalysts for the total oxidation of propene. J Catal 232:96–101

    Article  CAS  Google Scholar 

  166. Gluhoi AC, Nieuwenhuys BE (2007) Structural and chemical promoter effects of alkali (earth) and cerium oxides in CO oxidation on supported gold. Catal Today 122:226–232

    Article  CAS  Google Scholar 

  167. Gluhoi AC (2005) Fundamental studies focused on understanding of gold catalysis. Faculty of Mathematics & Natural Sciences, Institute of Chemistry, Leiden University, Leiden

    Google Scholar 

  168. Gluhoi AC, Tang X, Marginean P, Nieuwenhuys BE (2006) Characterization and catalytic activity of unpromoted and alkali (earth)-promoted Au/Al2O3 catalysts for low-temperature CO oxidation. Top Catal 39:101–110

    Article  CAS  Google Scholar 

  169. de Miguel SR, Caballero Martinez A, Castro AA, Scelza OA (1996) Effect of lithium addition upon γ-Al2O3 for isopropanol dehydration. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 65:131–136

    Google Scholar 

  170. Lippits MJ, Iwema RRHB, Nieuwenhuys BE (2009) A comparative study of oxidation of methanol on γ-Al2O3 supported group IB metal catalysts. Catal Today 145:27–33

    Article  CAS  Google Scholar 

  171. Grisel RJH, Weststrate CJ, Goossens A, Crajé MWJ, Van der Kraan AM, Nieuwenhuys BE (2002) Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment. Catal Today 72:123–132

    Article  CAS  Google Scholar 

  172. Yang Q, Liu G, Liu Y (2017) Perovskite-type oxides as the catalyst precursors for preparing supported metallic nanocatalysts: a review. Ind Eng Chem Res 57:1–17

    Article  CAS  Google Scholar 

  173. Grabowska E (2016) Selected perovskite oxides: characterization, preparation and photocatalytic properties—a review. Appl. Catal. B Environ. 186:97–126

    Article  CAS  Google Scholar 

  174. Lam SM, Sin JC, Mohamed AR (2017) A newly emerging visible light-responsive BiFeO3 perovskite for photocatalytic applications: a mini review. Mater Res Bull 90:15–30

    Article  CAS  Google Scholar 

  175. Chen J, He Z, Li G, An T, Shi H, Li Y (2017) Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene. Appl Catal B Environ 209:146–154

    Article  CAS  Google Scholar 

  176. Pacchioni G, Freund HJ (2018) Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems. Chem Soc Rev 47:8474–8502

    Article  CAS  Google Scholar 

  177. Tosoni S, Pacchioni G (2017) Trends in adhesion energies of gold on MgO (100), Rutile TiO2 (110), and CeO2 (111) surfaces: a comparative DFT study. J Phys Chem C 121:28328–28338

    Article  CAS  Google Scholar 

  178. Corma A, García H, Llabrés i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655

    Article  CAS  Google Scholar 

  179. Chen L, Xu Q (2019) Metal-organic framework composites for catalysis. Matter 1:57–89

    Article  Google Scholar 

  180. Cui Y, Li B, He H, Zhou W, Chen B, Qian G (2016) Metal–organic frameworks as platforms for functional materials. Acc Chem Res 49:483–493

    Article  CAS  Google Scholar 

  181. Zhu QL, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal–organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213

    Article  CAS  Google Scholar 

  182. Hawxwell SM, Espallargas GM, Bradshaw D, Rosseinsky MJ, Prior TJ, Florence AJ, van de Streek J, Brammer L (2007) Ligand flexibility and framework rearrangement in a new family of porous metal–organic frameworks. Chem Commun 15:1532–1534

    Article  Google Scholar 

  183. Jiao L, Wang Y, Jiang H, Xu Q (2018) Metal–organic frameworks as platforms for catalytic applications. Adv Mater 30(1703663):1–23

    Google Scholar 

  184. Xu C, Fang R, Luque R, Chen L, Li Y (2019) Functional metal–organic frameworks for catalytic applications. Coord Chem Rev 388:268–292

    Article  CAS  Google Scholar 

  185. Tu W, Xu Y, Yin S, Xu R (2018) Rational design of catalytic centers in crystalline frameworks. Adv Mater 30(1707582):1–29

    Google Scholar 

  186. Kang Y-S, Lu Y, Chen K, Zhao Y, Wang P, Sun W-Y (2019) Metal–organic frameworks with catalytic centers: from synthesis to catalytic application. Coord Chem Rev 378:262–280

    Article  CAS  Google Scholar 

  187. Dang S, Zhu Q-L, Xu Q (2018) Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 3(17075):1–14

    Google Scholar 

  188. Chen L, Luque R, Li Y (2017) Controllable design of tunable nanostructures inside metal–organic frameworks. Chem Soc Rev 46:4614–4630

    Article  CAS  Google Scholar 

  189. O’Neill LD, Zhang H, Bradshaw D (2010) Macro-/microporous MOF composite beads. J Mater Chem 20:5720–5726

    Article  CAS  Google Scholar 

  190. Li G, Zhao S, Zhang Y, Tang Z (2018) Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv Mater 30(1800702):1–43

    Google Scholar 

  191. Sun J-L, Chen Y-Z, Ge B-D, Li J-H, Wang G-M (2018) Three-shell Cu@Co@Ni nanoparticles stabilized with a metal–organic framework for enhanced tandem catalysis. ACS Appl Mater Interfaces 11:940–947

    Article  CAS  Google Scholar 

  192. Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316

    Article  CAS  Google Scholar 

  193. Yang Q, Xu Q, Yu S, Jiang H (2016) Pd nanocubes@ ZIF-8: integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew Chem Int Ed 55:3685–3689

    Article  CAS  Google Scholar 

  194. Chen Y-Z, Gu B, Uchida T, Liu J, Liu X, Ye B-J, Xu Q, Jiang H-L (2019) Location determination of metal nanoparticles relative to a metal–organic framework. Nat Commun 10(3462):1–10

    Google Scholar 

  195. Gadipelli S, Travis W, Zhou W, Guo Z (2014) A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ Sci 7:2232–2238

    Article  CAS  Google Scholar 

  196. Liu B, Shioyama H, Akita T, Xu Q (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391

    Article  CAS  Google Scholar 

  197. Liu B, Han S, Tanaka K, Shioyama H, Xu Q (2009) Metal–organic framework (MOF) as a precursor for synthesis of platinum supporting zinc oxide nanoparticles. Bull Chem Soc Jpn 82:1052–1054

    Article  CAS  Google Scholar 

  198. Ruppert AM, Weckhuysen BM (2008) Metal–support interactions. In: Handbook of heterogeneous catalysis, pp 1178–1188

  199. Bingwa N, Patala R, Noh J-H, Ndolomingo MJ, Tetyana S, Bewana S, Meijboom R (2017) Synergistic effects of gold–palladium nanoalloys and reducible supports on the catalytic reduction of 4-nitrophenol. Langmuir 33:7086–7095

    Article  CAS  Google Scholar 

  200. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2014) Improved γ-alumina-supported Pd and Rh catalysts for hydrodechlorination of chlorophenols. Appl Catal A Gen 488:78–85

    Article  CAS  Google Scholar 

  201. Baeza JA, Calvo L, Gilarranz MA, Rodriguez JJ (2014) Effect of size and oxidation state of size-controlled rhodium nanoparticles on the aqueous-phase hydrodechlorination of 4-chlorophenol. Chem Eng J 240:271–280

    Article  CAS  Google Scholar 

  202. Gómez-Sainero LM, Seoane XL, Fierro JLG, Arcoya A (2002) Liquid-phase hydrodechlorination of CCl4 to CHCl3 on Pd/carbon catalysts: nature and role of Pd active species. J Catal 209:279–288

    Article  CAS  Google Scholar 

  203. Ordóñez S, Díaz E, Bueres RF, Asedegbega-Nieto E, Sastre H (2010) Carbon nanofibre-supported palladium catalysts as model hydrodechlorination catalysts. J Catal 272:158–168

    Article  CAS  Google Scholar 

  204. Baeza JA, Calvo L, Gilarranz MA, Mohedano AF, Casas JA, Rodriguez JJ (2012) Catalytic behavior of size-controlled palladium nanoparticles in the hydrodechlorination of 4-chlorophenol in aqueous phase. J Catal 293:85–93

    Article  CAS  Google Scholar 

  205. Ewbank JL, Kovarik L, Diallo FZ, Sievers C (2015) Effect of metal–support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming. Appl Catal A Gen 494:57–67

    Article  CAS  Google Scholar 

  206. Molina CB, Calvo L, Gilarranz MA, Casas JA, Rodriguez JJ (2009) Pd–Al pillared clays as catalysts for the hydrodechlorination of 4-chlorophenol in aqueous phase. J Hazard Mater 172:214–223

    Article  CAS  Google Scholar 

  207. Lokteva ES, Peristyy AA, Kavalerskaya NE, Golubina EV, Yashina LV, Rostovshchikova TN, Gurevich SA, Kozhevin VM, Yavsin DA, Lunin VV (2012) Laser electrodispersion as a new chlorine-free method for the production of highly effective metal-containing supported catalysts. Pure Appl Chem 84:495–508

    Article  CAS  Google Scholar 

  208. Cao S, Tao FF, Tang Y, Li Y, Yu J (2016) Size-and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem Soc Rev 45:4747–4765

    Article  CAS  Google Scholar 

  209. Bingwa N, Meijboom R (2014) Kinetic evaluation of dendrimer-encapsulated palladium nanoparticles in the 4-nitrophenol reduction reaction. J Phys Chem C 118:19849–19858

    Article  CAS  Google Scholar 

  210. Prestianni A, Ferrante F, Sulman EM, Duca D (2014) Density functional theory investigation on the nucleation and growth of small palladium clusters on a hyper-cross-linked polystyrene matrix. J Phys Chem C 118:21006–21013

    Article  CAS  Google Scholar 

  211. Ncube P, Bingwa N, Baloyi H, Meijboom R (2015) Catalytic activity of palladium and gold dendrimer-encapsulated nanoparticles for methylene blue reduction: a kinetic analysis. Appl Catal A Gen 495:63–71

    Article  CAS  Google Scholar 

  212. Cortese R, Schimmenti R, Prestianni A, Duca D (2018) DFT calculations on subnanometric metal catalysts: a short review on new supported materials. Theor Chem Acc 137(59):2–8

    Google Scholar 

  213. Zhang C, Michaelides A, King DA, Jenkins SJ (2010) Positive charge states and possible polymorphism of gold nanoclusters on reduced ceria. J Am Chem Soc 132:2175–2182

    Article  CAS  Google Scholar 

  214. Tosoni S, Pacchioni G (2019) Oxide-supported gold clusters and nanoparticles in catalysis: a computational chemistry perspective. ChemCatChem 11:73–89

    Article  CAS  Google Scholar 

  215. Häkkinen H, Landman U (2000) Gold clusters (AuN, 2 < ~ N < ~ 10) and their anions. Phys Rev B 62:R2287–R2290

    Article  Google Scholar 

  216. Janiak C (2013) Ionic liquids for the synthesis and stabilization of metal nanoparticles. Zeitschrift Für Naturforsch B 68:1059–1089

    Article  CAS  Google Scholar 

  217. An K, Alayoglu S, Ewers T, Somorjai GA (2012) Colloid chemistry of nanocatalysts: a molecular view. J Colloid Interface Sci 373:1–13

    Article  CAS  Google Scholar 

  218. Lou XW, Yuan C, Rhoades E, Zhang Q, Archer LA (2006) Encapsulation and Ostwald ripening of Au and Au–Cl complex nanostructures in silica shells. Adv Funct Mater 16:1679–1684

    Article  CAS  Google Scholar 

  219. Ostwald WZ (1901) Blocking of Ostwald ripening allowing long-term stabilization. Phys Chem 37:385

    Google Scholar 

  220. Kim M, Phan VN, Lee K (2012) Exploiting nanoparticles as precursors for novel nanostructure designs and properties. CrystEngComm 14:7535–7548

    Article  CAS  Google Scholar 

  221. Ma Z, Yu J, Dai S (2010) Preparation of inorganic materials using ionic liquids. Adv Mater 22:261–285

    Article  CAS  Google Scholar 

  222. Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778

    Article  CAS  Google Scholar 

  223. Scholten JD, Leal BC, Dupont J (2011) Transition metal nanoparticle catalysis in ionic liquids. ACS Catal 2:184–200

    Article  CAS  Google Scholar 

  224. Hardacre C, Parvulescu V (2014) Catalysis in ionic liquirds: from catalyst synthesis to application. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  225. Bönnemann H, Richards RM (2001) Nanoscopic metal particles–synthetic methods and potential applications. Eur J Inorg Chem 2001:2455–2480

    Article  Google Scholar 

  226. Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove M-J (2001) Ligand-stabilized ruthenium nanoparticles: synthesis, organization, and dynamics. J Am Chem Soc 123:7584–7593

    Article  CAS  Google Scholar 

  227. Neouze M-A (2010) About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials. J Mater Chem 20:9593–9607

    Article  CAS  Google Scholar 

  228. Vollmer C, Janiak C (2011) Naked metal nanoparticles from metal carbonyls in ionic liquids: easy synthesis and stabilization. Coord Chem Rev 255:2039–2057

    Article  CAS  Google Scholar 

  229. Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47:654–670

    Article  CAS  Google Scholar 

  230. Xiao D, Rajian JR, Cady A, Li S, Bartsch RA, Quitevis EL (2007) Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids. J Phys Chem B 111:4669–4677

    Article  CAS  Google Scholar 

  231. Kuwabata S, Tsuda T, Torimoto T (2010) Room-temperature ionic liquid. A new medium for material production and analyses under vacuum conditions. J Phys Chem Lett 1:3177–3188

    Article  CAS  Google Scholar 

  232. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  233. Ndolomingo MJ, Meijboom R (2016) Determination of the surface area and sizes of supported copper nanoparticles through organothiol adsorption–chemisorption. Appl Surf Sci 390:224–235

    Article  CAS  Google Scholar 

  234. Qian W, Texter J, Yan F (2017) Frontiers in poly (ionic liquid) s: syntheses and applications. Chem Soc Rev 46:1124–1159

    Article  CAS  Google Scholar 

  235. Vijayakrishna K, Charan KTP, Manojkumar K, Venkatesh S, Pothanagandhi N, Sivaramakrishna A, Mayuri P, Kumar AS, Sreedhar B (2016) Ni nanoparticles stabilized by poly (ionic liquids) as chemoselective and magnetically recoverable catalysts for transfer hydrogenation reactions of carbonyl compounds. ChemCatChem 8:1139–1145

    Article  CAS  Google Scholar 

  236. Charan KTP, Pothanagandhi N, Vijayakrishna K, Sivaramakrishna A, Mecerreyes D, Sreedhar B (2014) Poly (ionic liquids) as “smart” stabilizers for metal nanoparticles. Eur Polym J 60:114–122

    Article  CAS  Google Scholar 

  237. Zimmerman SC (1999) Dendritic macromolecules: concepts, syntheses, perspectives. J Chem Educ 76:31

    Article  CAS  Google Scholar 

  238. Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704

    Article  CAS  Google Scholar 

  239. Kim Y-G, Oh S-K, Crooks RM (2004) Preparation and characterization of 1–2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chem Mater 16:167–172

    Article  CAS  Google Scholar 

  240. Deraedt C, Ye R, Ralston WT, Toste FD, Somorjai GA (2017) Dendrimer-stabilized metal nanoparticles as efficient catalysts for reversible dehydrogenation/hydrogenation of N-heterocycles. J Am Chem Soc 139:18084–18092

    Article  CAS  Google Scholar 

  241. Noh J-H, Meijboom R (2014) Catalytic evaluation of dendrimer-templated Pd nanoparticles in the reduction of 4-nitrophenol using Langmuir-Hinshelwood kinetics. Appl Surf Sci 320:400–413

    Article  CAS  Google Scholar 

  242. Krüger C, Agarwal S, Greiner A (2008) Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach. J Am Chem Soc 130:2710–2711

    Article  CAS  Google Scholar 

  243. Bronger R, Le TD, Bastin S, García-Antón J, Citadelle C, Chaudret B, Lecante P, Igau A, Philippot K (2011) Multi-site coordination N-phosphanylamidine ligands as stabilizers for the synthesis of ruthenium nanoparticles. New J Chem 35:2653–2660

    Article  CAS  Google Scholar 

  244. Jadhav SA, Brunella V, Scalarone D (2015) Polymerizable ligands as stabilizers for nanoparticles. Part Part Syst Charact 32:417–428

    Article  CAS  Google Scholar 

  245. Khlebtsov BN, Khlebtsov NG (2011) On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J 73:118–127

    Article  CAS  Google Scholar 

  246. Bienert R, Emmerling F, Thünemann AF (2009) The size distribution of’gold standard’nanoparticles. Anal Bioanal Chem 395:1651–1660

    Article  CAS  Google Scholar 

  247. Pyrz WD, Buttrey DJ (2008) Particle size determination using TEM: a discussion of image acquisition and analysis for the novice microscopist. Langmuir 24:11350–11360

    Article  CAS  Google Scholar 

  248. Goldstein JI, Newbury DE, Michael JR, Ritchie NWM, Scott JHJ, Joy DC (2017) Scanning electron microscopy and X-ray microanalysis. Springer, Berlin

    Google Scholar 

  249. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  250. Guha S, Li M, Tarlov MJ, Zachariah MR (2012) Electrospray–differential mobility analysis of bionanoparticles. Trends Biotechnol 30:291–300

    Article  CAS  Google Scholar 

  251. Couteau O, Roebben G (2011) Measurement of the size of spherical nanoparticles by means of atomic force microscopy. Meas Sci Technol 22(065101):1–8

    Google Scholar 

  252. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  253. Janz A, Köckritz A, Yao L, Martin A (2010) Fundamental calculations on the surface area determination of supported gold nanoparticles by alkanethiol adsorption. Langmuir 26:6783–6789

    Article  CAS  Google Scholar 

  254. Perumal S, Hofmann A, Scholz N, Rühl E, Graf C (2011) Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles. Langmuir 27:4456–4464

    Article  CAS  Google Scholar 

  255. Gadogbe M, Ansar SM, He G, Collier WE, Rodriguez J, Liu D, Chu I-W, Zhang D (2013) Determination of colloidal gold nanoparticle surface areas, concentrations, and sizes through quantitative ligand adsorption. Anal Bioanal Chem 405:413–422

    Article  CAS  Google Scholar 

  256. Sing KSW (1998) Adsorption methods for the characterization of porous materials. Adv Colloid Interface Sci 76:3–11

    Article  Google Scholar 

  257. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  258. Anderson JA (2012) Supported metals in catalysis. World Scientific, Singapore

    Google Scholar 

  259. Berndt H, Pitsch I, Evert S, Struve K, Pohl M-M, Radnik J, Martin A (2003) Oxygen adsorption on Au/Al2O3 catalysts and relation to the catalytic oxidation of ethylene glycol to glycolic acid. Appl Catal A Gen 244:169–179

    Article  CAS  Google Scholar 

  260. Chiorino A, Manzoli M, Menegazzo F, Signoretto M, Vindigni F, Pinna F, Boccuzzi F (2009) New insight on the nature of catalytically active gold sites: quantitative CO chemisorption data and analysis of FTIR spectra of adsorbed CO and of isotopic mixtures. J Catal 262:169–176

    Article  CAS  Google Scholar 

  261. Clément M, Ménard H, Rowntree PA (2008) Determination of the surface area of Pd and nanometric Au aggregates supported on a micrometric solid support by thiol adsorption and GC–MS. Langmuir 24:8045–8049

    Article  CAS  Google Scholar 

  262. Van Vegten N, Haider P, Maciejewski M, Krumeich F, Baiker A (2009) Chemisorption of methyl mercaptane on titania-supported Au nanoparticles: viability of Au surface area determination. J Colloid Interface Sci 339:310–316

    Article  CAS  Google Scholar 

  263. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  CAS  Google Scholar 

  264. Dubois LH, Nuzzo RG (1992) Synthesis, structure, and properties of model organic surfaces. Annu Rev Phys Chem 43:437–463

    Article  CAS  Google Scholar 

  265. Hinterwirth H, Kappel S, Waitz T, Prohaska T, Lindner W, Lämmerhofer M (2013) Quantifying thiol ligand density of self-assembled monolayers on gold nanoparticles by inductively coupled plasma–mass spectrometry. ACS Nano 7:1129–1136

    Article  CAS  Google Scholar 

  266. Mahmoud MA, Garlyyev B, El-Sayed MA (2013) Determining the mechanism of solution metallic nanocatalysis with solid and hollow nanoparticles: homogeneous or heterogeneous. J Phys Chem C 117:21886–21893

    Article  CAS  Google Scholar 

  267. Folkers JP, Gorman CB, Laibinis PE, Buchholz S, Whitesides GM, Nuzzo RG (1995) Self-assembled monolayers of long-chain hydroxamic acids on the native oxide of metals. Langmuir 11:813–824

    Article  CAS  Google Scholar 

  268. Haider P, Baiker A (2007) Gold supported on Cu–Mg–Al-mixed oxides: strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium. J Catal 248:175–187

    Article  CAS  Google Scholar 

  269. Punniyamurthy T, Velusamy S, Iqbal J (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev 105:2329–2364

    Article  CAS  Google Scholar 

  270. Herves P, Perez-Lorenzo M, Liz-Marzan LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577–5587

    Article  CAS  Google Scholar 

  271. Zhang W, Yang Z, Wang X, Zhang Y, Wen X, Yang S (2006) Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catal Commun 7:408–412

    Article  CAS  Google Scholar 

  272. Grabowski LR, Van Veldhuizen EM, Pemen AJM, Rutgers WR (2007) Breakdown of methylene blue and methyl orange by pulsed corona discharge. Plasma Sources Sci Technol 16:226–232

    Article  CAS  Google Scholar 

  273. Zhang L, Nie Y, Hu C, Hu X (2011) Decolorization of methylene blue in layered manganese oxide suspension with H2O2. J Hazard Mater 190:780–785

    Article  CAS  Google Scholar 

  274. Salem IA (2000) Kinetics of the oxidative color removal and degradation of bromophenol blue with hydrogen peroxide catalyzed by copper(II)-supported alumina and zirconia. Appl Catal B Environ 28:153–162

    Article  CAS  Google Scholar 

  275. El-Dein AM, Libra JA, Wiesmann U (2003) Mechanism and kinetic model for the decolorization of the azo dye Reactive Black 5 by hydrogen peroxide and UV radiation. Chemosphere 52:1069–1077

    Article  CAS  Google Scholar 

  276. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  277. Zhou L, Song W, Chen Z, Yin G (2013) Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environ Sci Technol 47:3833–3839

    Article  CAS  Google Scholar 

  278. Sopajaree K (1997) Photocatalytic oxidation of methylene blue by titanium dioxide in an integrated photoreactor-membrane filtration unit. Doctoral dissertation, University of Texas at Arlington

  279. Mills A, Davies RH, Worsley D (1993) Water purification by semiconductor photocatalysis. Chem Soc Rev 22:417–425

    Article  CAS  Google Scholar 

  280. Salem IA, El-Maazawi MS (2000) Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces. Chemosphere 41:1173–1180

    Article  CAS  Google Scholar 

  281. Ilunga AK, Meijboom R (2016) Catalytic oxidation of methylene blue by dendrimer encapsulated silver and gold nanoparticles. J Mol Catal A Chem 411:48–60

    Article  CAS  Google Scholar 

  282. Elango G, Roopan SM (2016) Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J Photochem Photobiol B Biol 155:34–38

    Article  CAS  Google Scholar 

  283. Liu Y, Jin W, Zhao Y, Zhang G, Zhang W (2017) Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl Catal B Environ 206:642–652

    Article  CAS  Google Scholar 

  284. Atchudan R, Edison TNJI, Perumal S, Karthikeyan D, Lee YR (2016) Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J Photochem Photobiol B Biol 162:500–510

    Article  CAS  Google Scholar 

  285. Edison TNJI, Atchudan R, Lee YR (2016) Optical sensor for dissolved ammonia through the green synthesis of silver nanoparticles by fruit extract of Terminalia chebula. J Clust Sci 27:683–690

    Article  CAS  Google Scholar 

  286. Sriskandakumar T, Opembe N, Chen C-H, Morey A, King’ondu C, Suib SL (2009) Green decomposition of organic dyes using octahedral molecular sieve manganese oxide catalysts. J Phys Chem A 113:1523–1530

    Article  CAS  Google Scholar 

  287. Nuengmatcha P, Chanthai S, Mahachai R, Oh WC (2016) Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation. Dye Pigment 134:487–497

    Article  CAS  Google Scholar 

  288. Wieprecht T, Heinz U, Xia J, Schlingloff G, Dannacher J (2004) Terpyridine-manganese complexes: a new class of bleach catalysts for detergent applications. J Surfactants Deterg 7:59–66

    Article  CAS  Google Scholar 

  289. Dannacher JJ (2006) Catalytic bleach: most valuable applications for smart oxidation chemistry. J Mol Catal A Chem 251:159–176

    Article  CAS  Google Scholar 

  290. Colombini MP, Andreotti A, Baraldi C, Degano I, Łucejko JJ (2007) Colour fading in textiles: a model study on the decomposition of natural dyes. Microchem J 85:174–182

    Article  CAS  Google Scholar 

  291. Osman A, Makris DP (2011) Oxidation of morin (2′,3,4′,5,7-pentahydroxylavone) with a peroxidase homogenate from onion. Int Food Res J 18:1085–1089

    CAS  Google Scholar 

  292. Topalovic T (2007) Catalytic bleaching of cotton: molecular and macroscopic aspects. University of Twente, Twente

    Google Scholar 

  293. Polzer F, Wunder S, Lu Y, Ballauff M (2012) Oxidation of an organic dye catalyzed by MnOx nanoparticles. J Catal 289:80–87

    Article  CAS  Google Scholar 

  294. Nemanashi M, Meijboom R (2015) Catalytic behavior of different sizes of dendrimer-encapsulated Aun nanoparticles in the oxidative degradation of morin with H2O2. Langmuir 31:9041–9053

    Article  CAS  Google Scholar 

  295. Bingwa N, Bewana S, Haumann M, Meijboom R (2017) Revisiting kinetics of morin oxidation: surface kinetics analysis. Appl Surf Sci 426:497–503

    Article  CAS  Google Scholar 

  296. Ilunga AK, Legodi IR, Gumbi S, Meijboom R (2018) Isothermic adsorption of morin onto the reducible mesoporous manganese oxide materials surface. Appl Catal B Environ 224:928–939

    Article  CAS  Google Scholar 

  297. Bingwa N, Bewana S, Ndolomingo MJ, Mawila N, Mogudi B, Ncube P, Carleschi E, Doyle BP, Haumann M, Meijboom R (2018) Effect of alkali and alkaline earth metal dopants on catalytic activity of mesoporous cobalt oxide evaluated using a model reaction. Appl Catal A Gen 555:189–195

    Article  CAS  Google Scholar 

  298. Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K (2000) Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation. J Am Chem Soc 122:7144–7145

    Article  CAS  Google Scholar 

  299. Mallat T, Baiker A (1994) Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catal Today 19:247–283

    Article  CAS  Google Scholar 

  300. Besson M, Gallezot P (2000) Selective oxidation of alcohols and aldehydes on metal catalysts. Catal Today 57:127–141

    Article  CAS  Google Scholar 

  301. Crozon A-B, Besson M, Gallezot P (1998) Oxidation of 9-decen-1-ol (rosalva) by air in aqueous media on platinum catalysts. New J Chem 22:269–273

    Article  CAS  Google Scholar 

  302. Della Pina C, Falletta E, Prati L, Rossi M (2008) Selective oxidation using gold. Chem Soc Rev 37:2077–2095

    Article  CAS  Google Scholar 

  303. Pagliaro M, Campestrini S, Ciriminna R (2005) Ru-based oxidation catalysis. Chem Soc Rev 34:837–845

    Article  CAS  Google Scholar 

  304. Schultz MJ, Adler RS, Zierkiewicz W, Privalov T, Sigman MS (2005) Using mechanistic and computational studies to explain ligand effects in the palladium-catalyzed aerobic oxidation of alcohols. J Am Chem Soc 127:8499–8507

    Article  CAS  Google Scholar 

  305. ten Brink G-J, Arends IWCE, Sheldon RA (2000) Green, catalytic oxidation of alcohols in water. Science 287:1636–1639

    Article  Google Scholar 

  306. Vazylyev M, Sloboda-Rozner D, Haimov A, Maayan G, Neumann R (2005) Strategies for oxidation catalyzed by polyoxometalates at the interface of homogeneous and heterogeneous catalysis. Top Catal 34:93–99

    Article  CAS  Google Scholar 

  307. Bolm C, Beller M (2004) Transition metals for organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  308. Xiao S, Zhang C, Chen R, Chen F (2015) Selective oxidation of benzyl alcohol to benzaldehyde with H2O2 in water on epichlorohydrin-modified Fe3O4 microspheres. New J Chem 39:4924–4932

    Article  CAS  Google Scholar 

  309. Choudhary VR, Dumbre DK, Uphade BS, Narkhede VS (2004) Solvent-free oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide using transition metal containing layered double hydroxides and/or mixed hydroxides. J Mol Catal A Chem 215:129–135

    Article  CAS  Google Scholar 

  310. Miedziak PJ, He Q, Edwards JK, Taylor SH, Knight DW, Tarbit B, Kiely CJ, Hutchings GJ (2011) Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catal Today 163:47–54

    Article  CAS  Google Scholar 

  311. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311:362–365

    Article  CAS  Google Scholar 

  312. Meenakshisundaram S, Nowicka E, Miedziak PJ, Brett GL, Jenkins RL, Dimitratos N, Taylor SH, Knight DW, Bethell D, Hutchings GJ (2010) Oxidation of alcohols using supported gold and gold–palladium nanoparticles. Faraday Discuss 145:341–356

    Article  CAS  Google Scholar 

  313. Kumar A, Kumar VP, Srikanth A, Vishwanathan V, Chary KVR (2016) Vapor phase oxidation of benzyl alcohol over nano Au/SBA-15 catalysts: effect of preparation methods. Catal Lett 146:35–46

    Article  CAS  Google Scholar 

  314. Wang C, Wu X, Xiao J (2008) Broader, greener, and more efficient: recent advances in asymmetric transfer hydrogenation. Chem Asian J 3:1750–1770

    Article  CAS  Google Scholar 

  315. Wu X, Xiao J (2007) Aqueous-phase asymmetric transfer hydrogenation of ketones—a greener approach to chiral alcohols. Chem Commun 24:2449–2466

    Article  CAS  Google Scholar 

  316. Clapham SE, Hadzovic A, Morris RH (2004) Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord Chem Rev 248:2201–2237

    Article  CAS  Google Scholar 

  317. Vincent T, Guibal E (2003) Chitosan-supported palladium catalyst. 3. Influence of experimental parameters on nitrophenol degradation. Langmuir 19:8475–8483

    Article  CAS  Google Scholar 

  318. Feng ZV, Lyon JL, Croley JS, Crooks RM, Vanden Bout DA, Stevenson KJ (2009) Synthesis and catalytic evaluation of dendrimer-encapsulated Cu nanoparticles. An undergraduate experiment exploring catalytic nanomaterials. J Chem Educ 86:368–372

    Article  CAS  Google Scholar 

  319. Lee J, Park JC, Song H (2008) A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv Mater 20:1523–1528

    Article  CAS  Google Scholar 

  320. Evangelista V, Acosta B, Miridonov S, Smolentseva E, Fuentes S, Simakov A (2015) Highly active Au-CeO2@ ZrO2 yolk–shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Appl Catal B Environ 166:518–528

    Article  CAS  Google Scholar 

  321. Nemanashi M, Meijboom R (2013) Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. J Colloid Interface Sci 389:260–267

    Article  CAS  Google Scholar 

  322. Antonels NC, Meijboom R (2013) Preparation of well-defined dendrimer Encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir-Hinshelwood approach. Langmuir 29:13433–13442

    Article  CAS  Google Scholar 

  323. An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman AE, Somorjai GA (2013) Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. J Am Chem Soc 135:16689–16696

    Article  CAS  Google Scholar 

  324. Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven JA (2017) Catalyst support effects on hydrogen spillover. Nature 541:68–71

    Article  CAS  Google Scholar 

  325. Wang Q, Zhang Y, Zhou Y, Zhang Z, Xu Y, Zhang C, Sheng X (2015) Synthesis of dendrimer-templated Pt nanoparticles immobilized on mesoporous alumina for p-nitrophenol reduction. New J Chem 39:9942–9950

    Article  CAS  Google Scholar 

  326. El-Bahy ZM (2013) Preparation and characterization of Pt-promoted NiY and CoY catalysts employed for 4-nitrophenol reduction. Appl Catal A Gen 468:175–183

    Article  CAS  Google Scholar 

  327. Lin F, Doong R (2011) Bifunctional Au–Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 115:6591–6598

    Article  CAS  Google Scholar 

  328. Zhou Z, Kooi S, Flytzani-Stephanopoulos M, Saltsburg H (2008) The role of the interface in CO oxidation on Au/CeO2 multilayer nanotowers. Adv Funct Mater 18:2801–2807

    Article  CAS  Google Scholar 

  329. Rath PC, Saikia D, Mishra M, Kao H-M (2018) Exceptional catalytic performance of ultrafine Cu2O nanoparticles confined in cubic mesoporous carbon for 4-nitrophenol reduction. Appl Surf Sci 427:1217–1226

    Article  CAS  Google Scholar 

  330. Morère J, Tenorio MJ, Torralvo MJ, Pando C, Renuncio JAR, Cabanas A (2011) Deposition of Pd into mesoporous silica SBA-15 using supercritical carbon dioxide. J Supercrit Fluids 56:213–222

    Article  CAS  Google Scholar 

  331. Liu X, Zhao X, Zhu L, Liu N, Tian T (2018) Palladium nanoparticles covered on amine-functionalized mesoporous hollow SiO2 spheres for the reduction of 4-nitrophenol. Catal Lett 148:173–180

    Article  CAS  Google Scholar 

  332. Chow LCH (2011) China’s energy future: a framing comment. Eurasian Geogr Econ 52:523–528

    Article  Google Scholar 

  333. Hassan H, Lim JK, Hameed BH (2016) Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Bioresour Technol 221:645–655

    Article  CAS  Google Scholar 

  334. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  Google Scholar 

  335. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114

    Article  CAS  Google Scholar 

  336. Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng 1:79–100

    Article  CAS  Google Scholar 

  337. Biddy MJ, Davis R, Humbird D, Tao L, Dowe N, Guarnieri MT, Linger JG, Karp EM, Salvachúa D, Vardon DR (2016) The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustain Chem Eng 4:3196–3211

    Article  CAS  Google Scholar 

  338. Luo W, Sankar M, Beale AM, He Q, Kiely CJ, Bruijnincx PCA, Weckhuysen BM (2015) High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nat Commun 6(6540):1–10

    CAS  Google Scholar 

  339. Li W, Xie J-H, Lin H, Zhou Q-L (2012) Highly efficient hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by iridium pincer complexes. Green Chem 14:2388–2390

    Article  CAS  Google Scholar 

  340. Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16:516–547

    Article  CAS  Google Scholar 

  341. Geilen F, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem 122:5642–5646

    Article  Google Scholar 

  342. Yan Z, Lin L, Liu S (2009) Synthesis of γ-valerolactone by hydrogenation of biomass-derived levulinic acid over Ru/C catalyst. Energy Fuels 23:3853–3858

    Article  CAS  Google Scholar 

  343. Amenuvor G, Makhubela BCE, Darkwa J (2016) Efficient solvent-free hydrogenation of levulinic acid to γ-valerolactone by pyrazolylphosphite and pyrazolylphosphinite ruthenium(II) complexes. ACS Sustain Chem Eng 4:6010–6018

    Article  CAS  Google Scholar 

  344. Hu Q, Yang L, Fan G, Li F (2016) Hydrogenation of biomass-derived compounds containing a carbonyl group over a copper-based nanocatalyst: insight into the origin and influence of surface oxygen vacancies. J Catal 340:184–195

    Article  CAS  Google Scholar 

  345. Kong X, Wu S, Jin Y, Liu L, Liu J (2017) Continuous hydrogenation of ethyl levulinate to γ-valerolactone over Cu-Zn/ZrO2 catalyst with alumina binder. Energy Fuels 31:12232–12237

    Article  CAS  Google Scholar 

  346. Stevens JG, Bourne RA, Twigg MV, Poliakoff M (2010) Real-time product switching using a twin catalyst system for the hydrogenation of furfural in supercritical CO2. Angew Chem 122:9040–9043

    Article  Google Scholar 

  347. Yan K, Liao J, Wu X, Xie X (2013) A noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid. RSC Adv 3:3853–3856

    Article  CAS  Google Scholar 

  348. Li Z, Zuo M, Jiang Y, Tang X, Zeng X, Sun Y, Lei T, Lin L (2016) Stable and efficient CuCr catalyst for the solvent-free hydrogenation of biomass derived ethyl levulinate to γ-valerolactone as potential biofuel candidate. Fuel 175:232–239

    Article  CAS  Google Scholar 

  349. Shimizu K, Kanno S, Kon K (2014) Hydrogenation of levulinic acid to γ-valerolactone by Ni and MoOx co-loaded carbon catalysts. Green Chem 16:3899–3903

    Article  CAS  Google Scholar 

  350. Nemanashi M, Noh J-H, Meijboom R (2018) Hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by mesoporous supported dendrimer-derived Ru and Pt catalysts: an alternative method for the production of renewable biofuels. Appl Catal A Gen 550:77–89

    Article  CAS  Google Scholar 

  351. Piskun AS, de Haan JE, Wilbers E, van de Bovenkamp HH, Tang Z, Heeres HJ (2016) Hydrogenation of levulinic acid to γ-valerolactone in water using millimeter sized supported Ru catalysts in a packed bed reactor. Acs Sustain Chem Eng 4:2939–2950

    Article  CAS  Google Scholar 

  352. Dutta S (2012) Catalytic materials that improve selectivity of biomass conversions. RSC Adv 2:12575–12593

    Article  CAS  Google Scholar 

  353. Omoruyi U, Page S, Hallett J, Miller PW (2016) Homogeneous catalyzed reactions of levulinic acid: to γ-valerolactone and beyond. Chemsuschem 9:2037–2047

    Article  CAS  Google Scholar 

  354. Xie C, Song J, Zhou B, Hu J, Zhang Z, Zhang P, Jiang Z, Han B (2016) Porous hafnium phosphonate: novel heterogeneous catalyst for conversion of levulinic acid and esters into γ-valerolactone. ACS Sustain Chem Eng 4:6231–6236

    Article  CAS  Google Scholar 

  355. Wright WRH, Palkovits R (2012) Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone. Chemsuschem 5:1657–1667

    Article  CAS  Google Scholar 

  356. Baijun L, Lianhai L, Bingchun W, Tianxi C, Iwatani K (1998) Liquid phase selective hydrogenation of furfural on Raney nickel modified by impregnation of salts of heteropolyacids. Appl Catal A Gen 171:117–122

    Article  Google Scholar 

  357. Sitthisa S, Resasco DE (2011) Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni. Catal Lett 141:784–791

    Article  CAS  Google Scholar 

  358. Zhong H, Li Q, Liu J, Yao G, Wang J, Zeng X, Huo Z, Jin F (2017) New method for highly efficient conversion of biomass-derived levulinic acid to γ-valerolactone in water without precious metal catalysts. ACS Sustain Chem Eng 5:6517–6523

    Article  CAS  Google Scholar 

  359. Wang S, Huang H, Dorcet V, Roisnel T, Bruneau C, Fischmeister C (2017) Efficient Iridium catalysts for base-free hydrogenation of levulinic acid. Organometallics 36:3152–3162

    Article  CAS  Google Scholar 

  360. Pileidis FD, Titirici M (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. Chemsuschem 9:562–582

    Article  CAS  Google Scholar 

  361. Zhang J, Chen J, Guo Y, Chen L (2015) Effective upgrade of levulinic acid into γ-valerolactone over an inexpensive and magnetic catalyst derived from hydrotalcite precursor. ACS Sustain Chem Eng 3:1708–1714

    Article  CAS  Google Scholar 

  362. Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals. Green Chem 10:238–242

    Article  Google Scholar 

  363. Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15:584–595

    Article  CAS  Google Scholar 

  364. Tang X, Zeng X, Li Z, Hu L, Sun Y, Liu S, Lei T, Lin L (2014) Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renew Sustain Energy Rev 40:608–620

    Article  CAS  Google Scholar 

  365. Hengne AM, Rode CV (2012) Cu–ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone. Green Chem 14:1064–1072

    Article  CAS  Google Scholar 

  366. Yang Y, Gao G, Zhang X, Li F (2014) Facile fabrication of composition-tuned Ru–Ni bimetallics in ordered mesoporous carbon for levulinic acid hydrogenation. ACS Catal 4:1419–1425

    Article  CAS  Google Scholar 

  367. Delhomme C, Schaper LA, Zhang-Preße M, Raudaschl-Sieber G, Weuster-Botz D, Kühn FE (2013) Catalytic hydrogenation of levulinic acid in aqueous phase. J Organomet Chem 724:297–299

    Article  CAS  Google Scholar 

  368. Tukacs JM, Király D, Strádi A, Novodarszki G, Eke Z, Dibó G, Kégl T, Mika LT (2012) Efficient catalytic hydrogenation of levulinic acid: a key step in biomass conversion. Green Chem 14:2057–2065

    Article  CAS  Google Scholar 

  369. Fábos V, Mika LT, Horváth IT (2014) Selective conversion of levulinic and formic acids to γ-valerolactone with the shvo catalyst. Organometallics 33:181–187

    Article  CAS  Google Scholar 

  370. Joo F, Tóth Z, Beck MT (1977) Homogeneous hydrogenations in aqueous solutions catalyzed by transition metal phosphine complexes. Inorg Chim Acta 25:L61–L62

    Article  CAS  Google Scholar 

  371. Deng L, Zhao Y, Li J, Fu Y, Liao B, Guo Q (2010) Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts. Chemsuschem 3:1172–1175

    Article  CAS  Google Scholar 

  372. Wang J, Jaenicke S, Chuah G-K (2014) Zirconium-Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction. RSC Adv 4:13481–13489

    Article  CAS  Google Scholar 

  373. Al-Shaal MG, Wright WRH, Palkovits R (2012) Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions. Green Chem 14:1260–1263

    Article  CAS  Google Scholar 

  374. Galletti AMR, Antonetti C, De Luise V, Martinelli M (2012) A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem 14:688–694

    Article  CAS  Google Scholar 

  375. Selva M, Gottardo M, Perosa A (2012) Upgrade of biomass-derived levulinic acid via Ru/C-catalyzed hydrogenation to γ-valerolactone in aqueous–organic–ionic liquids multiphase systems. ACS Sustain Chem Eng 1:180–189

    Article  CAS  Google Scholar 

  376. Tan J, Cui J, Deng T, Cui X, Ding G, Zhu Y, Li Y (2015) Water-promoted hydrogenation of levulinic acid to γ-valerolactone on supported ruthenium catalyst. ChemCatChem 7:508–512

    Article  CAS  Google Scholar 

  377. Braden DJ, Henao CA, Heltzel J, Maravelias CC, Dumesic JA (2011) Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid. Green Chem 13:1755–1765

    Article  CAS  Google Scholar 

  378. Wettstein SG, Bond JQ, Alonso DM, Pham HN, Datye AK, Dumesic JA (2012) RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to γ-valerolactone. Appl Catal B Environ 117:321–329

    Article  CAS  Google Scholar 

  379. Zhu S, Zhu Y, Hao S, Zheng H, Mo T, Li Y (2012) One-step hydrogenolysis of glycerol to biopropanols over Pt–H4SiW12O40/ZrO2 catalysts. Green Chem 14:2607–2616

    Article  CAS  Google Scholar 

  380. Wang Y, Zhou J, Guo X (2015) Catalytic hydrogenolysis of glycerol to propanediols: a review. RSC Adv 5:74611–74628

    Article  CAS  Google Scholar 

  381. Vasiliadou ES, Eggenhuisen TM, Munnik P, De Jongh PE, De Jong KP, Lemonidou AA (2014) Synthesis and performance of highly dispersed Cu/SiO2 catalysts for the hydrogenolysis of glycerol. Appl Catal B Environ 145:108–119

    Article  CAS  Google Scholar 

  382. Xiao Z, Jin S, Wang X, Li W, Wang J, Liang C (2012) Preparation, structure and catalytic properties of magnetically separable Cu–Fe catalysts for glycerol hydrogenolysis. J Mater Chem 22:16598–16605

    Article  CAS  Google Scholar 

  383. van Ryneveld E, Mahomed AS, van Heerden PS, Green MJ, Friedrich HB (2011) A catalytic route to lower alcohols from glycerol using Ni-supported catalysts. Green Chem 13:1819–1827

    Article  CAS  Google Scholar 

  384. Marinoiu A, Ionita G, Gáspár CL, Cobzaru C, Marinescu D, Teodorescu C, Oprea S (2009) Selective hydrogenolysis of glycerol to propylene glycol using heterogeneous catalysts. React Kinet Mech Catal 99:111–118

    Google Scholar 

  385. Marinoiu A, Ionita G, Gáspár C-L, Cobzaru C, Oprea S (2009) Glycerol hydrogenolysis to propylene glycol. React Kinet Catal Lett 97:315–320

    Article  CAS  Google Scholar 

  386. Amada Y, Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K (2011) Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst. Appl Catal B Environ 105:117–127

    Article  CAS  Google Scholar 

  387. Vasiliadou ES, Lemonidou AA (2011) Parameters affecting the formation of 1,2-propanediol from glycerol over Ru/SiO2 catalyst. Org Process Res Dev 15:925–931

    Article  CAS  Google Scholar 

  388. Zhang JS, Delgass WN, Fisher TS, Gore JP (2007) Kinetics of Ru-catalyzed sodium borohydride hydrolysis. J Power Sources 164:772–781

    Article  CAS  Google Scholar 

  389. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820

    Article  CAS  Google Scholar 

  390. Rill C, Kolar ZI, Kickelbick G, Wolterbeek HT, Peters JA (2009) Kinetics and thermodynamics of adsorption on hydroxyapatite of the [160Tb] terbium complexes of the bone-targeting ligands DOTP and BPPED. Langmuir 25:2294–2301

    Article  CAS  Google Scholar 

  391. Wunder S, Lu Y, Albrecht M, Ballauff M (2011) Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal 1:908–916

    Article  CAS  Google Scholar 

  392. Vannice MA, Joyce WH (2005) Kinetics of catalytic reactions. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the University of Johannesburg and in the part by the National Research Foundation of South Africa (Grant specific unique reference numbers (UID) 85386, 117997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinout Meijboom.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndolomingo, M.J., Bingwa, N. & Meijboom, R. Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. J Mater Sci 55, 6195–6241 (2020). https://doi.org/10.1007/s10853-020-04415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04415-x

Navigation