Skip to main content
Log in

On Chaos of Discrete Time Fractional Order Host-Immune-Tumor Cells Interaction Model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this study, we consider a three-dimensional discrete-time model to investigate the interaction between normal host cells with functional immune cells and tumor cells. Fixed point analysis is performed to study the stability of the discrete three-dimensional model and the sensitivity of the system analysis on the initial cell population. Necessary and sufficient conditions for optimal control of tumor cell growth have been created with the introduction of immune-chemotherapy drugs and the chaotic behavior of the system with branching having been demonstrated. The turbulence behavior of the system is shown by branching and Lyapunov power is performed for the integer-order discrete model and the turbulence effect is compared to the different fractional orders of the discrete model. Also, by numerical simulation, validating the theoretical results of the work and the effect of fractional derivative order on system chaos are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abdeljawad, T., Karapinar, E., Panda, S.K., Mlaiki, N.: Solutions of boundary value problems on extended Branciari b-distance. J. Inequ. Appl. 2020, 103 (2020). https://doi.org/10.1186/s13660-020-02373-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Ravichandran, C., Logeswari, K., Panda, S.K., Nisar, K.S.: On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions. Chaos, Solitons Fractals 139, 110012 (2020). https://doi.org/10.1016/j.chaos.2020.110012

    Article  MathSciNet  MATH  Google Scholar 

  3. Panda, S.K., Karapinar, E., Atangana, A.: A numerical schemes and comparisons for fixed point results with applications to the solutions of Volterra integral equations in dislocated extended b-metric space. Alex. Eng. J. 59(2), 815–827 (2020). https://doi.org/10.1016/j.aej.2020.02.007

    Article  Google Scholar 

  4. Panda, S.K., Abdeljawad, T., Ravichandran, C.: Novel fixed point approach to Atangana-Baleanu fractional and \(L^p\)-Fredholm integral equations. Alex. Eng. J. 59(4), 1959–1970 (2020). https://doi.org/10.1016/j.aej.2019.12.027

    Article  Google Scholar 

  5. Panda, S.K., Abdeljawad, T., Swamy, K.K.: New numerical scheme for solving integral equations via fixed point method using distinct (\(\omega \)-F)-contractions. Alex. Eng. J. 59(4), 2015–2026 (2020). https://doi.org/10.1016/j.aej.2019.12.034

    Article  Google Scholar 

  6. Panda, S.K., Abdeljawad, T., Ravichandran, C.: A complex valued approach to the solutions of riemann-liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method. Chaos, Solitons Fractals 130, 109439 (2020). https://doi.org/10.1016/j.chaos.2019.109439

    Article  MathSciNet  MATH  Google Scholar 

  7. Baleanu, D., Hedayati, V., Rezapour, S., Al-Qurashi, M.M.: On two fractional differential inclusions. Springerplus 5(1), 882 (2016)

    Article  Google Scholar 

  8. Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019). https://doi.org/10.3390/sym11050686

    Article  MATH  Google Scholar 

  9. Borah, M.J., Hazarika, B., Panda, S.K., Nieto, J.J.: Examining the correlation between the weather conditions and COVID-19 pandemic in India: a mathematical evidence. Results Phys. 19, 103587 (2020). https://doi.org/10.1016/j.rinp.2020.103587

    Article  Google Scholar 

  10. Panda, S.K.: Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019-nCoV/SARS-CoV-2. Results Phys. 19, 103433 (2020). https://doi.org/10.1016/j.rinp.2020.103433

    Article  Google Scholar 

  11. Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos, Solitons Fractals 144, 110668 (2021). https://doi.org/10.1016/j.chaos.2021.110668

    Article  MathSciNet  Google Scholar 

  12. Rezapour, S., Imran, A., Hussain, A., Martinez, F., Etemad, S., Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference fbvps. Symmetry 13(3), 469 (2021). https://doi.org/10.3390/sym13030469

    Article  Google Scholar 

  13. Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A., Etemad, S., Rezapour, S.: Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Difference Equ. 2021, 68 (2021). https://doi.org/10.1186/s13662-021-03228-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled caputo conformable system of pantograph problems. Turk. J. Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70

    Article  MathSciNet  MATH  Google Scholar 

  15. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid caputo fractional modeling for thermostat with hybrid boundary value conditions. Boundary Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 59(5), 3019–3027 (2020). https://doi.org/10.1016/j.aej.2020.04.053

    Article  Google Scholar 

  17. Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation. Boundary Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0

    Article  MathSciNet  Google Scholar 

  18. Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo-Fabrizio derivative. Boundary Value Probl. 2018, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of \(CD4^+\) T-cell with a new approach of fractional derivative. Adv. Difference Equ. 2020, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w

    Article  MathSciNet  MATH  Google Scholar 

  20. Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos, Solitons Fractals 140, 110107 (2020). https://doi.org/10.1016/j.chaos.2020.110107

    Article  MathSciNet  MATH  Google Scholar 

  21. Rezapour, S., Mohammadi, H., Jajarmi, A.: A new mathematical model for Zika virus transmission. Adv. Difference Equ. 2020, 589 (2020). https://doi.org/10.1186/s13662-020-03044-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Baleanu, D., Mohammadi, H., Rezapour, S.: mathematical theoretical study of a particular system of Caputo-Fabrizio fractional differential equations for the Rubella disease model. Adv. Difference Equ. 2020, 184 (2020). https://doi.org/10.1186/s13662-020-02614-z

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirschner, D., Panetta, J.: Modeling immunotherapy of the tumor immune interaction. J. Math. Biol. 37, 235–252 (1998). https://doi.org/10.1007/s002850050127

    Article  MATH  Google Scholar 

  24. Kuznetsov, V., Makalkin, I., Taylor, M., Perelson, A.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994). https://doi.org/10.1016/S0092-8240(05)80260-5

    Article  MATH  Google Scholar 

  25. Mayer, H., Zaenker, K.S., Heiden, U.A.D.: A basic mathematical model of the immune response. Chaos: Interdiscip. J. Nonlinear Sci. 5(1), 155–161 (1995). https://doi.org/10.1063/1.166098

    Article  Google Scholar 

  26. Wodarz, D.: Mathematical models of immune effector responses to viral infections: virus control versus the development of pathology. J. Comput. Appl. Math. 184(1), 301–319 (2005). https://doi.org/10.1016/j.cam.2004.08.016

    Article  MathSciNet  MATH  Google Scholar 

  27. Wodarz, D., May, R.M., Nowak, M.A.: The role of antigen independent persistence of memory cytotoxic T lymphocytes. Int. Immunol. 12(4), 467–477 (2007). https://doi.org/10.1093/intimm/12.4.467

    Article  Google Scholar 

  28. Ferrari, C.: Hbv and the immune response. Liver Int. 35(S1), 121–128 (2015). https://doi.org/10.1111/liv.12749

    Article  Google Scholar 

  29. Khajanchi, S.: Bifurcations and oscillatory dynamics in a tumor immune interaction model. BIOMAT 2015, 241–259 (2016). https://doi.org/10.1142/9789813141919_0016

    Article  MathSciNet  MATH  Google Scholar 

  30. Khajanchi, S.: Uniform persistence and global stability for a brain tumor and immune system interaction. Biophys. Rev. Lett. 12(4), 187–208 (2017). https://doi.org/10.1142/S1793048017500114

    Article  Google Scholar 

  31. Sardar, M., Khajanchi, S.: Is the allee effect relevant to stochastic cancer model? J. Appl. Math. Comput. (2021). https://doi.org/10.1007/s12190-021-01618-6

    Article  MATH  Google Scholar 

  32. Khajanchi, S., Nieto, J.J.: Spatiotemporal dynamics of a glioma immune interaction model. Sci. Rep. 11, 22385 (2021). https://doi.org/10.1038/s41598-021-00985-1

    Article  Google Scholar 

  33. Khajanchi, S.: Stability analysis of a mathematical model for glioma-immune interaction under optimal therapy. Int. J. Nonlinear Sci. Numer. Simul. 20(3–4), 187–208 (2019). https://doi.org/10.1515/ijnsns-2017-0206

    Article  MathSciNet  MATH  Google Scholar 

  34. Khajanchi, S.: The impact of immunotherapy on a glioma immune interaction model. Chaos, Solitons Fractals 152, 111346 (2021). https://doi.org/10.1016/j.chaos.2021.111346

    Article  MathSciNet  MATH  Google Scholar 

  35. Khajanchi, S.: Modeling the dynamics of glioma-immune surveillance. Chaos, Solitons Fractals 114, 108–118 (2018). https://doi.org/10.1016/j.chaos.2018.06.028

    Article  MathSciNet  MATH  Google Scholar 

  36. Khajanchi, S.: Chaotic dynamics of a delayed tumor-immune interaction model. Int. J. Biomath. 13(2), 2050009 (2020). https://doi.org/10.1142/S1793524520500096

    Article  MathSciNet  MATH  Google Scholar 

  37. Khajanchi, S., Nieto, J.J.: Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Appl. Math. Comput. 340, 180–205 (2019). https://doi.org/10.1016/j.amc.2018.08.018

    Article  MathSciNet  MATH  Google Scholar 

  38. Khajanchi, S., Perc, M., Ghosh, D.: Modeling the dynamics of glioma-immune surveillance. Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 103101 (2018). https://doi.org/10.1063/1.5052496

    Article  MathSciNet  MATH  Google Scholar 

  39. Itik, M., Banks, S.P.: Chaos in a three dimensional cancer model. Int. J. Bifurc. Chaos 20(1), 71–79 (2010). https://doi.org/10.1142/S0218127410025417

    Article  MathSciNet  MATH  Google Scholar 

  40. Salman, S.M.: On a discretized fractional-order SIR model for influenza. Progress in Fractional Differentiation and Application 3(2), 163–173 (2017). https://doi.org/10.18576/pfda/030207

  41. Elaydi, S.: An Introduction to Difference Equation. Springer, Switzerland (2008)

    Google Scholar 

  42. Khajanchi, S., Ghosh, D.: The combined effects of optimal control in cancer remission. Appl. Math. Comput. 271, 375–388 (2015). https://doi.org/10.1016/j.amc.2015.09.012

    Article  MathSciNet  MATH  Google Scholar 

  43. Khajanchi, S., Banerjee, S.: A strategy of optimal efficacy of T11 target structure in the treatment of brain tumor. J. Biol. Syst. 27(2), 225–255 (2019). https://doi.org/10.1142/S0218339019500104

    Article  MathSciNet  MATH  Google Scholar 

  44. Pontryagin, L.S., Boltyansky, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The Mathematical Theory of Optimal Processes. John Wiley, New York (1962)

    Google Scholar 

  45. Sethi, S.P.: Optimal Control Theory. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  46. Gomez-Aguilar, J.F., Lopez-Lopez, M.G., Alvarado-Martinez, V.M., Baleanu, D., Khan, H.: Chaos in a cancer model via fractional derivatives with exponential decay and Mittag-Leffler law. Entropy 19(12), 681 (2017). https://doi.org/10.3390/e19120681

    Article  MathSciNet  Google Scholar 

  47. Ghanbari, B.: On the modeling of the interaction between the tumor growth and the immune system using some new fractional and fractional-fractal operators. Adv. Difference Equ. 2020, 585 (2020). https://doi.org/10.1186/s13662-020-03040-x

    Article  MathSciNet  Google Scholar 

  48. Ucar, E., Ozdemir, N., Altun, E.: Fractional order model of immune cells influenced by cancer cells. Math. Model. Nat. Phenomena 14(3), 308 (2019). https://doi.org/10.1051/mmnp/2019002

    Article  MathSciNet  MATH  Google Scholar 

  49. Ahmed, E., Hashish, A., Rihan, F.A.: On fractional order cancer model. J. Fract. Calculus Appl. 3(2), 1–6 (2012)

    Google Scholar 

  50. Arshad, S., Sohail, A., Javed, S.: Dynamical study of fractional order tumor model. Int. J. Comput. Methods 12(5), 1550032 (2015). https://doi.org/10.1142/S0219876215500322

    Article  MathSciNet  MATH  Google Scholar 

  51. Selvam, A.G.M., Alzabut, J., Dhineshbabu, R., Rashid, S., Ur Rehman, M.: Discrete fractional order two-point boundary value problem with some relevant physical applications. Journal of Inequalities and Applications 2020, 221 (2020). https://doi.org/10.1186/s13660-020-02485-8

  52. Selvam, A.G.M., Baleanu, D., Alzabut, J., Vignesh, D., Abbas, S.: On Hyers-Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum. Adv. Difference Equ. 2020, 456 (2020). https://doi.org/10.1186/s13662-020-02920-6

    Article  MathSciNet  MATH  Google Scholar 

  53. Alzabut, J., Abdeljawad, T., Baleanu, D.: Nonlinear delay fractional difference equations with applications on discrete fractional Lotka-Volterra competition model. J. Comput. Anal. Appl. 25(5), 889–898 (2018)

    MathSciNet  Google Scholar 

  54. Tripathy, M.C., Mondal, D., Biswas, K., Sen, S.: Experimental studies on realization of fractional inductors and fractional order bandpass filters. Int. J. Circuit Theory Appl. 43(9), 1183–1196 (2015). https://doi.org/10.1002/cta.2004

    Article  Google Scholar 

  55. Ahmed, E., El-Sayed, A.M., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325(1), 542–553 (2007). https://doi.org/10.1016/j.jmaa.2006.01.087

    Article  MathSciNet  MATH  Google Scholar 

  56. Elsadany, A.A., Matouk, A.E.: Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization. J. Appl. Math. Comput. 49, 269–283 (2015). https://doi.org/10.1007/s12190-014-0838-6

    Article  MathSciNet  MATH  Google Scholar 

  57. Agarwal, R.P., El-Sayed, A.M., Salman, S.M.: Fractional order chua’s system: discretization, bifurcation and chaos. J. Egypt. Math. Soc. 2013, 320 (2013). https://doi.org/10.1186/1687-1847-2013-320

    Article  MATH  Google Scholar 

  58. Liu, X., Xiao, D.: Complex dynamic behaviors of a discrete-time predator-prey system. Chaos, Solitons Fractals 32(1), 80–94 (2007). https://doi.org/10.1016/j.chaos.2005.10.081

    Article  MathSciNet  MATH  Google Scholar 

  59. El Raheem, Z.F., Salman, S.M.: On a discretization process of fractional-order logistic differential equation. J. Egypt. Math. Soc. 22(3), 407–412 (2014). https://doi.org/10.1016/j.joems.2013.09.001

    Article  MathSciNet  MATH  Google Scholar 

  60. Pimenov, A., Kelly, T.C., Korobeinikov, A., O’Callaghan, M.J.A., Pokrovskii, A.V., Rachinskii, D.: Memory effects in population dynamics: spread of infectious disease as a case study. Math. Model. Nat. Phenomena 7(3), 204–226 (2012). https://doi.org/10.1051/mmnp/20127313

    Article  MathSciNet  MATH  Google Scholar 

  61. Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62(3), 1602–1611 (2011). https://doi.org/10.1016/j.camwa.2011.03.036

    Article  MathSciNet  MATH  Google Scholar 

  62. Chen, F., Luo, X., Zhao, Y.: Existence results for nonlinear fractional difference equation. Adv. Difference Equ. 2011, 713201 (2011). https://doi.org/10.1155/2011/713201

    Article  MathSciNet  MATH  Google Scholar 

  63. Anastassiou, G.: Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 52(3–4), 556–566 (2010). https://doi.org/10.1016/j.mcm.2010.03.055

    Article  MathSciNet  MATH  Google Scholar 

  64. Ouannas, A., Khennaoui, A.A., Bendoukha, S., T. P. Vo, V.T.P., Huynh, V.V.: Principles of delta fractional calculus on time scales and inequalities. Applied Sciences 8(12), 2640 (2018). https://doi.org/10.3390/app8122640

Download references

Acknowledgements

The fourth author was supported by Miandoab Branch, Islamic Azad University. The fifth author was supported by Azarbaijan Shahid Madani University. The authors express their gratitude to dear unknown referees for their helpful suggestions which improved the final version of this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shahram Rezapour.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzabut, J., Selvam, A.G.M., Dhakshinamoorthy, V. et al. On Chaos of Discrete Time Fractional Order Host-Immune-Tumor Cells Interaction Model. J. Appl. Math. Comput. 68, 4795–4820 (2022). https://doi.org/10.1007/s12190-022-01715-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01715-0

Keywords

Mathematics Subject Classification

Navigation