Skip to main content

Advertisement

Log in

Production of Antibacterial Coatings Through Atmospheric Pressure Plasma: a Promising Alternative for Combatting Biofilms in the Food Industry

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

One of the main problems in the food industry is the formation of biofilms on food contact surfaces. These bacterial communities show high resistance against the commonly used disinfectants, which makes them difficult to eradicate causing economic losses and threatening the quality of the products and the health of consumers. Several studies have reported the use of atmospheric pressure plasma technologies to provide antibacterial properties to a wide range of materials through the deposition of coatings that either avoid the initial attachment of bacteria to the surface or kill the attached bacteria before the mature biofilm is formed. These technologies avoid the use of extreme pressures and temperatures during the deposition process, thus preserving the properties of the substrate, which makes them interesting for their potential application in the production of anti-biofilm food contact materials. This paper reviews different approaches that use atmospheric pressure plasma technologies to combat bacterial colonization and biofilm formation on materials of relevance for the food industry. Three types of approaches are identified and their suitability in the food industry is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amirzada, M. R., Tatzel, A., Viereck, V., & Hillmer, H. (2016). Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates. Applied Nanoscience, 6(2), 215–222.

    Article  CAS  Google Scholar 

  • Bárdos, L., & Baránková, H. (2010). Cold atmospheric plasma: Sources, processes, and applications. Thin Solid Films, 518(23), 6705–6713.

    Article  Google Scholar 

  • Bazaka, K., Jacob, M. V., Chrzanowski, W., & Ostrikov, K. (2015). Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Advances, 5(60), 48739–48759.

    Article  CAS  Google Scholar 

  • Bhatt, S., Pulpytel, J., & Arefi-Khonsari, F. (2015). Low and atmospheric plasma polymerisation of nanocoatings for bio-applications. Surface Innovations, 3(2), 63–83.

    Article  CAS  Google Scholar 

  • Borer, B. (2005). SiO x in a thin film deposition on particles by plasma enhanced chemical vapor deposition circulating fluidized bed reactor. Swiss Federal Institute of Technology Zurich. Retrieved from http://e-collection.library.ethz.ch/eserv/eth:28482/eth-28482-02.pdf. Accessed 15 April 2019.

  • Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018). The potential of cold plasma for safe and sustainable food production. Trends in Biotechnology, 36(6), 615–626.

    Article  CAS  Google Scholar 

  • Chen, M., Yu, Q., & Sun, H. (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal of Molecular Sciences, 14(9), 18488–18501.

    Article  Google Scholar 

  • Chen, L., Zhang, H., Liu, Q., Pang, X., Zhao, X., & Yang, H. (2019). Sanitising efficacy of lactic acid combined with low-concentration sodium hypochlorite on Listeria innocua in organic broccoli sprouts. International Journal of Food Microbiology, 295, 41–48.

    Article  CAS  Google Scholar 

  • Conte, A., Buonocore, G. G., Bevilacqua, A., Sinigaglia, M., & Del Nobile, M. A. (2006). Immobilization of lysozyme on polyvinylalcohol films for active packaging applications. Journal of Food Protection, 69(4), 866–870.

    Article  CAS  Google Scholar 

  • Conte, A., Buonocore, G. G., Sinigaglia, M., Lopez, L. C., Favia, P., D’Agostino, R., & Del Nobile, M. A. (2008). Antimicrobial activity of immobilized lysozyme on plasma-treated polyethylene films. Journal of Food Protection, 71(1), 119–125.

    Article  CAS  Google Scholar 

  • Cullen, P. J., Lalor, J., Scally, L., Boehm, D., Milosavljević, V., Bourke, P., & Keener, K. (2018). Translation of plasma technology from the lab to the food industry. Plasma Processes and Polymers, 15(2), 1700085.

    Article  Google Scholar 

  • Da Ponte, G., Sardella, E., Fanelli, F., Van Hoeck, A., d’Agostino, R., Paulussen, S., & Favia, P. (2011). Atmospheric pressure plasma deposition of organic films of biomedical interest. Surface and Coatings Technology, 205(SUPPL. 2), S525–S528.

    Article  Google Scholar 

  • Da Ponte, G., Sardella, E., Fanelli, F., D’Agostino, R., Gristina, R., & Favia, P. (2012). Plasma deposition of PEO-like coatings with aerosol-assisted dielectric barrier discharges. Plasma Processes and Polymers, 9(11–12), 1176–1183.

    Article  Google Scholar 

  • Deng, X., Leys, C., Vujosevic, D., Vuksanovic, V., Cvelbar, U., De Geyter, N., et al. (2014). Engineering of composite organosilicon thin films with embedded silver nanoparticles via atmospheric pressure plasma process for antibacterial activity. Plasma Processes and Polymers, 11(10), 921–930.

    Article  CAS  Google Scholar 

  • Deng, X., Yu Nikiforov, A., Coenye, T., Cools, P., Aziz, G., Morent, R., de Geyter, N., & Leys, C. (2015). Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Scientific Reports, 5(1), 10138.

    Article  Google Scholar 

  • Dhumal, C. V., & Sarkar, P. (2018). Composite edible films and coatings from food-grade biopolymers. Journal of Food Science and Technology, 55(11), 4369–4383.

    Article  CAS  Google Scholar 

  • Dong, B., Jiang, H., Manolache, S., Wong, A. C. L., & Denes, F. S. (2007). Plasma-mediated grafting of poly (ethylene glycol) on polyamide and polyester surfaces and evaluation of antifouling ability of modified substrates. Langmuir, 23(13), 7306–7313.

    Article  CAS  Google Scholar 

  • Duday, D., Vreuls, C., Moreno, M., Frache, G., Boscher, N. D., Zocchi, G., Archambeau, C., van de Weerdt, C., Martial, J., & Choquet, P. (2013). Atmospheric pressure plasma modified surfaces for immobilization of antimicrobial nisin peptides. Surface and Coatings Technology, 218(1), 152–161.

    Article  CAS  Google Scholar 

  • EFSA Scientific Committee, Hardy, A., Benford, D., Halldorsson, T., Jeger, M. J., Knutsen, H. K., et al. (2018). Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA Journal, 16(7), 5327, 95 pp.

    Article  Google Scholar 

  • Ermolaeva, S. A., Sysolyatina, E. V., & Gintsburg, A. L. (2015). Atmospheric pressure nonthermal plasmas for bacterial biofilm prevention and eradication. Biointerphases, 10(2), 029404.

    Article  Google Scholar 

  • Fox, E., Hunt, K., O’Brien, M., & Jordan, K. (2011). Listeria monocytogenes in Irish farmhouse cheese processing environments. International Journal of Food Microbiology, 145(SUPPL. 1), S39–S45.

    Article  Google Scholar 

  • Gabriel, A. A., Ugay, M. C. C. F., Siringan, M. A. T., Rosario, L. M. D., Tumlos, R. B., & Ramos, H. J. (2016). Atmospheric pressure plasma jet inactivation of Pseudomonas aeruginosa biofilms on stainless steel surfaces. Innovative Food Science and Emerging Technologies, 36, 311–319.

    Article  CAS  Google Scholar 

  • Guo, L., Yuan, W., Lu, Z., & Li, C. M. (2013). Polymer/nanosilver composite coatings for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 69–83.

    Article  CAS  Google Scholar 

  • Gupta, R., & Xie, H. (2018). Nanoparticles in daily life: applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology, 37(3), 209–230.

    Article  Google Scholar 

  • Gupta, T. T., Karki, S. B., Matson, J. S., Gehling, D. J., & Ayan, H. (2017). Sterilization of biofilm on a titanium surface using a combination of nonthermal plasma and chlorhexidine digluconate. BioMed Research International, 2017, 6085741.

    PubMed  PubMed Central  Google Scholar 

  • Hernández-Orta, M., Pérez, E., Cruz-Barba, L. E., & Sánchez-Castillo, M. A. (2018). Synthesis of bactericidal polymer coatings by sequential plasma-induced polymerization of 4-vinyl pyridine and gas-phase quaternization of poly-4-vinyl pyridine. Journal of Materials Science, 53(12), 8766–8785.

    Article  Google Scholar 

  • Koban, I., Geisel, M. H., Holtfreter, B., Jablonowski, L., Hübner, N.-O., Matthes, R., et al. (2013). Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms in vitro. ISRN Dentistry, 2013, 573262.

    Article  Google Scholar 

  • Kovalova, Z., Leroy, M., Kirkpatrick, M. J., Odic, E., & Machala, Z. (2016). Corona discharges with water electrospray for Escherichia coli biofilm eradication on a surface. Bioelectrochemistry, 112, 91–99.

    Article  CAS  Google Scholar 

  • Larsen, M. H., Dalmasso, M., Ingmer, H., Langsrud, S., Malakauskas, M., Mader, A., Møretrø, T., Smole Možina, S., Rychli, K., Wagner, M., John Wallace, R., Zentek, J., & Jordan, K. (2014). Persistence of foodborne pathogens and their control in primary and secondary food production chains. Food Control, 44, 92–109.

    Article  Google Scholar 

  • Li, L. (2016). Prevention of biofilm formation on food contact surfaces by nanoscale plasma coatings. University of Missouri-Columbia. Retrieved from https://mospace.umsystem.edu/xmlui/handle/10355/57594. Accessed 14 September 2018.

  • Liguori, A., Traldi, E., Toccaceli, E., Laurita, R., Pollicino, A., Focarete, M. L., Colombo, V., & Gherardi, M. (2016). Co-ceposition of plasma-polymerized polyacrylic acid and silver nanoparticles for the production of nanocomposite coatings using a non-equilibrium atmospheric pressure plasma jet. Plasma Processes and Polymers, 13(6), 623–632.

    Article  CAS  Google Scholar 

  • Lin, L., Wang, Y., Huang, X. D., Xu, Z. K., & Yao, K. (2010). Modification of hydrophobic acrylic intraocular lens with poly (ethylene glycol) by atmospheric pressure glow discharge: a facile approach. Applied Surface Science, 256(24), 7354–7364.

    Article  CAS  Google Scholar 

  • Liu, Q., Wu, J., Lim, Z. Y., Aggarwal, A., Yang, H., & Wang, S. (2017). Evaluation of the metabolic response of Escherichia coli to electrolysed water by 1H NMR spectroscopy. LWT - Food Science and Technology, 79, 428–436.

    Article  CAS  Google Scholar 

  • Liu, Q., Wu, J., Lim, Z. Y., Lai, S., Lee, N., & Yang, H. (2018). Metabolite profiling of Listeria innocua for unravelling the inactivation mechanism of electrolysed water by nuclear magnetic resonance spectroscopy. International Journal of Food Microbiology, 271, 24–32.

    Article  Google Scholar 

  • Lomonaco, S., Decastelli, L., Nucera, D., Gallina, S., Bianchi, D. M., & Civera, T. (2009). Listeria monocytogenes in Gorgonzola: subtypes, diversity and persistence over time. International Journal of Food Microbiology, 128(3), 516–520.

    Article  CAS  Google Scholar 

  • López, M., Calvo, T., Prieto, M., Múgica-Vidal, R., Muro-Fraguas, I., Alba-Elías, F., & Alvarez-Ordóñez, A. (2019). A review on non-thermal atmospheric plasma for food preservation: mode of action, determinants of effectiveness, and applications. Frontiers in Microbiology, 10, 622.

    Article  Google Scholar 

  • Lu, H., Patil, S., Keener, K. M., Cullen, P. J., & Bourke, P. (2014). Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. Journal of Applied Microbiology, 116(4), 784–794.

    Article  CAS  Google Scholar 

  • Marambio-Jones, C., & Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531–1551.

    Article  CAS  Google Scholar 

  • Merche, D., Vandencasteele, N., & Reniers, F. (2012). Atmospheric plasmas for thin film deposition: a critical review. Thin Solid Films, 520(13), 4219–4236.

    Article  CAS  Google Scholar 

  • Moreno-Couranjou, M., Mauchauffé, R., Bonot, S., Detrembleur, C., & Choquet, P. (2018). Anti-biofouling and antibacterial surfaces via a multicomponent coating deposited from an up-scalable atmospheric-pressure plasma-assisted CVD process. Journal of Materials Chemistry B, 6(4), 614–623.

    Article  CAS  Google Scholar 

  • Nesbakken, T., Kapperud, G., & Caugant, D. A. (1996). Pathways of Listeria monocytogenes contamination in the meat processing industry. International Journal of Food Microbiology, 31(1–3), 161–171.

    Article  CAS  Google Scholar 

  • Nisol, B., Poleunis, C., Bertrand, P., & Reniers, F. (2010). Poly (ethylene glycol) films deposited by atmospheric pressure plasma liquid deposition and atmospheric pressure plasma-enhanced chemical vapour deposition: process, chemical composition analysis and biocompatibility. Plasma Processes and Polymers, 7(8), 715–725.

    Article  CAS  Google Scholar 

  • Ojeniyi, B., Christensen, J., & Bisgaard, M. (2000). Comparative investigations of Listeria monocytogenes isolated from a Turkey processing plant, Turkey products, and from human cases of listeriosis in Denmark. Epidemiology and Infection, 125(2), 303–308.

    Article  CAS  Google Scholar 

  • Palumbo, F., Camporeale, G., Yang, Y. W., Wu, J. S., Sardella, E., Dilecce, G., Calvano, C. D., Quintieri, L., Caputo, L., Baruzzi, F., & Favia, P. (2015). Direct plasma deposition of lysozyme-embedded bio-composite thin films. Plasma Processes and Polymers, 12(11), 1302–1310.

    Article  CAS  Google Scholar 

  • Rahman, S. M. E., Ding, T., & Oh, D. H. (2010). Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions. International Journal of Food Microbiology, 139(3), 147–153.

    Article  CAS  Google Scholar 

  • Ramamoorthy, A., Rahman, M., Mooney, D. A., Don MacElroy, J. M., & Dowling, D. P. (2009). The influence of process parameters on chemistry, roughness and morphology of siloxane films deposited by an atmospheric plasma jet system. Plasma Processes and Polymers, 6(S1), S530–S536.

    Article  CAS  Google Scholar 

  • Ramkumar, M. C., Navaneetha Pandiyaraj, K., Arun Kumar, A., Padmanabhan, P. V. A., Cools, P., De Geyter, N., et al. (2017). Atmospheric pressure non-thermal plasma assisted polymerization of poly (ethylene glycol) methylether methacrylate (PEGMA) on low density polyethylene (LDPE) films for enhancement of biocompatibility. Surface and Coatings Technology, 329, 55–67.

    Article  CAS  Google Scholar 

  • Ramkumar, M. C., Pandiyaraj, K. N., Arun Kumar, A., Padmanabhan, P. V. A., Uday Kumar, S., Gopinath, P., Bendavid, A., Cools, P., de Geyter, N., Morent, R., & Deshmukh, R. R. (2018). Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: influence of various gaseous plasma pretreatment. Applied Surface Science, 439, 991–998.

    Article  CAS  Google Scholar 

  • Sardella, E., Gristina, R., Senesi, G. S., D’Agostino, R., & Favia, P. (2004). Homogeneous and micro-patterned plasma-deposited PEO-like coatings for biomedical surfaces. Plasma Processes and Polymers, 1(1), 63–72.

    Article  CAS  Google Scholar 

  • Sardella, E., Palumbo, F., Camporeale, G., & Favia, P. (2016). Non-equilibrium plasma processing for the preparation of antibacterial surfaces. Materials, 9(7), 515.

    Article  Google Scholar 

  • Sarghini, S., Paulussen, S., & Terryn, H. (2011). Atmospheric pressure plasma technology: a straightforward deposition of antibacterial coatings. Plasma Processes and Polymers, 8(1), 59–69.

    Article  CAS  Google Scholar 

  • Shi, Q., Vitchuli, N., Nowak, J., Caldwell, J. M., Breidt, F., Bourham, M., Zhang, X., & McCord, M. (2011). Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. European Polymer Journal, 47(7), 1402–1409.

    Article  CAS  Google Scholar 

  • Smet, C., Baka, M., Dickenson, A., Walsh, J. L., Valdramidis, V. P., & Van Impe, J. F. (2018). Antimicrobial efficacy of cold atmospheric plasma for different intrinsic and extrinsic parameters. Plasma Processes and Polymers, 15(2), 1700048.

    Article  Google Scholar 

  • Stallard, C. P., McDonnell, K. A., Onayemi, O. D., O’Gara, J. P., & Dowling, D. P. (2012). Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases, 7(1), 31.

    Article  CAS  Google Scholar 

  • Stallard, C. P., Solar, P., Biederman, H., & Dowling, D. P. (2016). Deposition of non-fouling PEO-like coatings using a low temperature atmospheric pressure plasma jet. Plasma Processes and Polymers, 13(2), 241–252.

    Article  CAS  Google Scholar 

  • Thallinger, B., Brandauer, M., Burger, P., Sygmund, C., Ludwig, R., Ivanova, K., et al. (2016). Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm system. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 104B, 1448–1456.

    Article  Google Scholar 

  • Tseng, H. J., Hsu, S. H., Wu, M. W., Hsueh, T. H., & Tu, P. C. (2009). Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect. Fibers and Polymers, 10(1), 53–59.

    Article  CAS  Google Scholar 

  • Vartiainen, J., Rättö, M., & Paulussen, S. (2005). Antimicrobial activity of glucose oxidase-immobilized plasma-activated polypropylene films. Packaging Technology and Science, 18(5), 243–251.

    Article  CAS  Google Scholar 

  • Vasilev, K., Griesser, S. S., & Griesser, H. J. (2011). Antibacterial surfaces and coatings produced by plasma techniques. Plasma Processes and Polymers, 8(11), 1010–1023.

    Article  CAS  Google Scholar 

  • Venault, A., Chang, Y., Hsu, H. H., Jhong, J. F., Yang, H. S., Wei, T. C., Tung, K. L., Higuchi, A., & Huang, J. (2013). Biofouling-resistance control of expanded poly (tetrafluoroethylene) membrane via atmospheric plasma-induced surface PEGylation. Journal of Membrane Science, 439, 48–57.

    Article  CAS  Google Scholar 

  • Winter, J., Brandenburg, R., & Weltmann, K. D. (2015). Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Science and Technology, 24(6), 064001.

    Article  Google Scholar 

  • Wulff, G., Gram, L., Ahrens, P., & Vogel, B. F. (2006). One group of genetically similar Listeria monocytogenes strains frequently dominates and persists in several fish slaughter- and smokehouses. Applied and Environmental Microbiology, 72(6), 4313–4322.

    Article  CAS  Google Scholar 

  • Yost, A. D., & Joshi, S. G. (2015). Atmospheric nonthermal plasma-treated PBS inactivates Escherichia coli by oxidative DNA damage. PLoS One, 10(10), 0139903.

    Article  Google Scholar 

  • Zhang, J., & Yang, H. (2017). Effects of potential organic compatible sanitisers on organic and conventional fresh-cut lettuce (Lactuca sativa Var. Crispa L). Food Control, 72, 20–26.

    Article  CAS  Google Scholar 

  • Zhang, J., Lai, S., & Yang, H. (2018a). Physicochemical and antibacterial effects of sodium bicarbonate and brine water on the electrolysed water generated by a portable sanitising unit. LWT - Food Science and Technology, 98, 524–532.

    Article  CAS  Google Scholar 

  • Zhang, J., Yang, H., & Chan, J. Z. Y. (2018b). Development of portable flow-through electrochemical sanitizing unit to generate near neutral electrolyzed water. Journal of Food Science, 83(3), 780–790.

    Article  CAS  Google Scholar 

  • Zhao, L., Zhang, Y., & Yang, H. (2017). Efficacy of low concentration neutralised electrolysed water and ultrasound combination for inactivating Escherichia coli ATCC 25922, Pichia pastoris GS115 and Aureobasidium pullulans 2012 on stainless steel coupons. Food Control, 73, 889–899.

    Article  Google Scholar 

  • Zhao, L., Zhao, M. Y., Phey, C. P., & Yang, H. (2019). Efficacy of low concentration acidic electrolysed water and levulinic acid combination on fresh organic lettuce (Lactuca sativa Var. Crispa L.) and its antimicrobial mechanism. Food Control, 101, 241–250.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author E. Sainz-García, as postdoctoral researcher of the University of La Rioja, thanks the postdoctoral training program that is funded by the Plan Propio of the University of La Rioja and the V Plan Riojano de I + D + i of the Autonomous Community of La Rioja.

Funding

This work was supported by the Ministerio de Economía, Industria y Competitividad of Spain (MINECO) (project AGL2017-82779-C2-R “Programa Estatal de I+D+i Orientada a los Retos de la Sociedad”) and co-funded by European Regional Development Fund (FEDER) “A way to make Europe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Alba-Elías.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Múgica-Vidal, R., Sainz-García, E., Álvarez-Ordóñez, A. et al. Production of Antibacterial Coatings Through Atmospheric Pressure Plasma: a Promising Alternative for Combatting Biofilms in the Food Industry. Food Bioprocess Technol 12, 1251–1263 (2019). https://doi.org/10.1007/s11947-019-02293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02293-z

Keywords

Navigation