Skip to main content
Log in

Rhizofiltration of Cadmium and Zinc in Hydroponic Systems

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The potential of two aquatic plants, e.g., Typha angustifolia and Acorus calamus, and a terrestrial plant, e.g., Pandanus amaryllifolius, was evaluated in hydroponic experiments for rhizofiltration of cadmium (Cd) and zinc (Zn). Of the three species, T. angustifolia experienced a 100% survival rate and showed no symptoms of toxicity, with substantial values of dry biomass production (11.5–20.8 g) and Cd and Zn uptake (4941.1–14,109.4 mg plant−1 and 14,039.3–59,360.8 mg plant−1), respectively. The other tested plants showed lower performance; P. amaryllifolius experienced phytotoxicity effects in the 40 mg Zn L−1 treatment. Based on our data, T. angustifolia is considered an excluder species for Cd and Zn as this species accumulated high Cd and Zn levels, primarily in roots, with bioconcentration factor (BCF) values > 100 and translocation factor (TF) values < 1 for all Cd and Zn treatments. All study plants exhibited lower heavy metal accumulation and uptake in most metal mixture treatments compared with Cd- or Zn-only treatments due to dilution effects. Percentage uptake of Cd by T. angustifolia increased with increasing Cd concentration (10.8–22.7%). Substantial percentage Zn uptake values were recorded at day 15 in the 40 mg L−1 Zn treatment for A. calamus (89.1%). The study plants are rarely consumed on a daily basis; therefore, such levels of metal uptake should not adversely affect human health. Based on hydroponic system data, hazard quotient (HQ) values of Cd were > 1 for all treatments, indicating possible health risk from Cd via plant consumption. Although HQ values of Zn are also > 1, the maximum permissible level (MPL) (< 20,000 mg kg−1) indicates that it occurs within acceptable levels. Only T. angustifolia is suggested as a suitable candidate plant in constructed wetlands and aquatic plant systems for removal of heavy metals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z., & Wolf, W. M. (2020). Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Scientific Reports, 10, 1675.

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals – concepts and application. Chemosphere, 91, 869–881.

    Article  CAS  Google Scholar 

  • Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavaş, İ., Ünay, A., Abdel-DAIM, M. M., Bin-Jumah, M., Hasanuzzaman, M., & Kalderis, M. (2020). Application of floating aquatic plants in phytoremediation of heavy metal polluted water: A review. Sustainability, 12, 1927.

    Article  CAS  Google Scholar 

  • Annan, K., Kojo, A. I., Cindy, A., Samuel, A., & Tunkumgnen, B. M. (2010). Profile of heavy metals in some medicinal plants from Ghana commonly used as components of herbal formulations. Phamacognosy Reviews, 2(1), 41–44.

  • APHA, AWWA and WEF (American Public Health Association, American Water Works Association and Water Environment Federation). (2005). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

  • Aravind, P., & Prasad, M. N. V. (2005). Cadmium-zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicity. Brazilian Journal of Plant Physiology, 17(1), 3–20.

  • Arivoli, A., Mohanraj, R., & Seenivasan, R. (2015). Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater. Environmental Science and Pollution Research, 22, 13336–13343.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Balakumbahan, R., Rajamani, K., & Kumanan, K. (2010). Acorus calamus: An overview. Journal of Medicinal Plant Research, 4(25), 2740–2745.

  • Barber, S. A. (1984). Soil nutrient bioavailability. John Wiley and Sons.

  • Bermudez, G. M. A., Jasen, R., Plá, R., & Pignata, M. L. (2011). Heavy metal and trace element concentrations in wheat grains: Assessment of potential non-carcinogenic health hazard through their consumption. Journal of Hazardous Materials, 193, 264–271.

    Article  CAS  Google Scholar 

  • Bernard, A. (2008). Cadmium & its adverse effects on human health. Indian Journal of Medical Research, 128(4), 557–564.

    CAS  Google Scholar 

  • Bertea, C. M., Azzolin, C. M., Bossi, S., Doglia, G., & Maffei, M. E. (2005). Identification of an EcoRI restriction site for a rapid and precise determination of beta-asarone-free Acorus calamus cytotypes. Phytochemistry, 66(5), 507–514.

    Article  CAS  Google Scholar 

  • Brown, K. H., Wuehler, S. E., & Peerson, J. M. (2001). The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food and Nutrition Bulletin, 22(2), 113–125.

    Article  Google Scholar 

  • Bunluesin, S., Kruatrachue, M., Pokethitiyook, P., Lanza, G. R., Upatham, E. S., & Soonthornsarathool, V. (2004). Plant screening and comparison of Ceratophyllum demersum and Hydrilla verticillata for cadmium accumulation. Bulletin of Environmental Contamination and Toxicology, 73, 591–598.

    Article  CAS  Google Scholar 

  • Chamannejadian, A., Sayyad, G., Moezzi, A., & Jahangiri, A. (2013). Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils. Iranian Journal of Environmental Health Science & Engineering, 10, 28.

    Article  Google Scholar 

  • Cheetangdee, V., & Chaiseri, S. (2006). Free amino acid and reducing sugar composition of pandan (Pandanus amaryllifolius) leaves. Kasetsart Journal (Natural Science), 40(Suppl), 67–74.

    CAS  Google Scholar 

  • Chorom, M., Parnian, A., & Jaafarzadeh, N. (2012). Nickel removal by the aquatic plant (Ceratophyllum demersum L.). International Journal of Environmental Science and Development, 3(4), 372–375.

    Article  CAS  Google Scholar 

  • Coakley, S., Cahill, G., Enright, A. M., O’Rourke, B., & Petti, C. (2019). Cadmium hyperaccumulation and translocation in Impatiens glandulifera: From foe to friend? Sustainability, 11.

  • Cule, N., Vilotic, D., Nesic, M., Veselinovic, M., Drazic, D., & Mitrovic, S. (2016). Phytoremediation potential of Canna indica L. in water contaminated with lead. Fresenius Environmental Bulletin, 25(9), 3728–3733.

    CAS  Google Scholar 

  • Dürešová, Z., Šuňovská, A., Horník, M., Pipíška, M., Gubišová, M., Gubiš, J., & Hostin, S. (2014). Rhizofiltration potential of Arundo donax for cadmium and zinc removal from contaminated wastewater. International Conference on Applied Natural Sciences 2013. Nový Smokovec, Slovakia, 2–4 October 2013.

  • Elias, T. S., & Dykeman, P. A. (2009). Edible Wild Plants: A North American field guide to over 200 natural foods. Sterling Publishing company, Inc..

  • Ellis, D. R., Gumaelius, L., Indriolo, E., Pickering, I. J., Banks, J. A., & Salt, D. E. (2006). A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiology, 141, 1544–1554.

    Article  CAS  Google Scholar 

  • Fritioff, Å., & Greger, M. (2003). Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. International Journal of Phytoremediation, 5(3), 211–224.

    Article  CAS  Google Scholar 

  • Gaikwad, D. J., Priyadarsini, S., & Mallick, B. (2020). Effects of different hydroponic systems and growing media on physiological parameters of Spinach. International Journal of Current Microbiology and Applied Sciences, 9(5), 1409–1414.

    Article  CAS  Google Scholar 

  • Gebeyehu, A., Shebeshe, N., Kloos, H., & Belay, S. (2018). Suitability of nutrients removal from brewery wastewater using a hydroponic technology with Typha latifolia. BMC Biotechnology, 18, 74.

    Article  CAS  Google Scholar 

  • Grispen, V. M. J, Nelissen, H. J. M., & Verkleij, J. A. C. (2006) Phytoextraction of Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils. Environmental Pollution, 144(1), 77–83.

  • Han, P., Kumar, P., & Ong, B.-L. (2014). Remediation of nutrient-rich waters using the terrestrial plants, Pandanus amaryllifolius Roxb. Journal of Environmental Sciences, 26, 404–414.

    Article  CAS  Google Scholar 

  • Hart, J. J., Welch, R. M., Norvell, W. A., & Kochian, L. V. (2002). Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiologia Plantarum, 116, 73–78.

    Article  CAS  Google Scholar 

  • Hasan, M. K., Cheng, Y., Kanwar, M. K., Chu, X. Y., Ahammed, G. J., & Qi, Z. Y. (2017). Responses of plant proteins to heavy metal stress - a review. Frontiers in Plant Science, 8, 1492.

    Article  Google Scholar 

  • Hauptvog, M., Kotrla, M., Prčík, M., Pauková, Ž., Kováčik, M., & Lošák, T. (2020). Phytoremediation potential of fast-growing energy plants: challenges and perspectives – a review. Polish Journal of Environmental Studies, 29(1), 505–516.

    Article  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experimental Station Circular, 347, 1–32.

    Google Scholar 

  • Igic, P. G., Lee, E., Harper, W., & Roach, K. W. (2002). Toxic effects associated with consumption of zinc. Mayo Clinic Proceedings, 77, 713–716.

    Article  Google Scholar 

  • Ignatius, A., Arunbabu, V., Neethu, J., & Ramasamy, E. V. (2014). Rhizofiltration of lead using an aromatic medicinal plant Plectranthus amboinicus cultured in a hydroponic nutrient film technique (NFT) system. Environmental Science and Pollution Research, 21, 13007–13016.

    Article  CAS  Google Scholar 

  • Ineu, R. P., Oliveira, C. S., Oliveira, V. A., Moraes-Silva, L., Almeida da Luz, S. C., & Pereira, M. E. (2013). Antioxidant effect of zinc chloride against ethanol-induced gastrointestinal lesions in rats. Food and Chemical Toxicology, 58, 522–529.

    Article  CAS  Google Scholar 

  • Jasrotia, S., Kansal, A., & Mehra, A. (2017). Performance of aquatic plant for phytoremediation of arsenic-contaminated water. Applied Water Science, 7, 889–896.

    Article  CAS  Google Scholar 

  • Jayanthi, N., Selvi Subramanian, & Hema, J. (2020). A hydroponic vetiver system to remove cadmium and chromium from contaminated water. 7th International Conference on Vetiver, Chiang Mai, Thailand, 23-29 October 2020, pp 1-12.

  • Kaewtubtim, P., Meeinkuirt, W., Seepom, S., & Pichtel, J. (2018). Phytomanagement of radionuclides and heavy metals in mangrove sediments of Pattani Bay, Thailand using Avicennia marina and Pluechea indica. Marine Pollution Bulletin, 127, 320–333.

    Article  CAS  Google Scholar 

  • Kazantzis, G. (2004). Cadmium, osteoporosis and calcium metabolism. Biometals, 17(5), 493–498.

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2000). Phytoextraction of metals from contaminated soil: A review of plant–soil–metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2(5), 1–25.

    Google Scholar 

  • Li, J., Yu, H., & Luan, Y. (2015). Meta-analysis of the copper, zinc and cadmium absorption capacities of aquatic plants in heavy metals-polluted water. International Journal of Environmental Research and Public Health, 12(12), 14958–14973.

    Article  CAS  Google Scholar 

  • Liu, Y., Chen, J., Lu, S., Yang, L., Qian, J., & Cao, S. (2016). Increased lead and cadmium tolerance of Typha angustifolia from Huaihe river is associated with enhanced phytochelatin synthesis and improved antioxidative capacity. Environmental Technology, 37(21), 2743–2749.

    Article  CAS  Google Scholar 

  • Majid, S. N., Khwakaram, A. I., Mam Rasul, G. A., & Ahmed, Z. H. (2014). Bioaccumulation, enrichment and translocation factors of some heavy metals in Typha angustifolia and Phragmites australis species growing along Qalyasan stream in Sulaimani city/IKR. Journal of Zankoy Sulaimani Part A, 16(4), 93–109.

    Article  Google Scholar 

  • Maksimović, T., Borišev, M., & Stankovic, Z. (2014). Seasonal dynamics of copper and zinc accumulation in shoots of Phragmites australis (Cav.) Trin ex Steud., Typha latifolia L. and Typha angustifolia L. Matica Srpska Journal of Natural Sciences, 127, 65–75.

    Article  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants. Academic Publishers.

  • Mwamba, T. M., Ali, S., Ali, B., Lwalaba, J. L., Liu, H., Farooq, M. A., Shou, J., & Zhou, W. (2016). Intensive effects of cadmium and copper on metal accumulation, oxidative stress, and mineral composition in Brassica napus. International journal of Environmental Science and Technology, 13, 2163–2174.

    Article  CAS  Google Scholar 

  • Ngole, V. M. (2011). Using soil heavy metal enrichment and mobility factors to determine potential uptake by vegetables. Plant, Soil and Environment, 57(1), 75–80.

    Article  CAS  Google Scholar 

  • Panich-Pat, T., Pokethitiyook, P., Kruatrachue, M., Upatham, E. S., Srinives, P., & Lanza, G. R. (2004). Removal of lead from contaminated soil by Typha angustifolia. Water, Air, and Soil Pollution, 155, 159–171.

    Article  CAS  Google Scholar 

  • Payne, E. G. I., Pham, T., Deletic, A., Hatt, B. E., Cook, P. L. M., & Fletcher, T. D. (2018). Which species? A decision-support tool to guide plant selection in stormwater biofilters. Advances in Water Resources, 113, 86–99.

    Article  CAS  Google Scholar 

  • Pence, N. S., Larsen, P. B., Ebbs, S. D., Letham, D. L. D., Lasat, M. M., Garvin, D. F., Eide, D., & Kochian, L. V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences, 97, 4956–4960.

    Article  CAS  Google Scholar 

  • Peungvicha, P., Wongkrajang, Y., Kongsaktrakoon, B., Temsiririrkul, R., & Watanabe, H. (2014). Pandanus amaryllifolius root extract prolongs sleeping time and reduces locomotor activity in mice. Mahidol University Journal of Pharmaceutical Sciences, 41(3), 6–12.

    Google Scholar 

  • Plum, L. M., Link, L., & Haase, H. (2010). The essential toxin: Impact of zinc on human health. International Journal of Environmental Research and Public Health, 7(4), 1342–1365.

    Article  CAS  Google Scholar 

  • R Development Core Team (2012). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna.

  • Rahman, M., & Hasegawa, H. (2011). Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere, 83, 633–646.

    Article  CAS  Google Scholar 

  • Rujput, S. B., Tonge, M. B., & Karuppayil, S. M. (2014). An overview on traditional uses and pharmaceutical profile for Acorus calamus Linn. (Sweet flag) and other Acorus species. Phytomedicine, 21, 268–276.

    Article  Google Scholar 

  • Saengwilai, P., Meeinkuirt, W., Pichtel, J., & Koedrith, P. (2017). Immobilization of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil. Environmental Science and Pollution Research, 24, 15756–15767.

    Article  CAS  Google Scholar 

  • Saengwilai, P., Meeinkuirt, W., Phusantisampan, T., & Pichtel, J. (2020). Immobilization of cadmium in contaminated soil using organic amendments and its effects on rice growth performance. Exposure and Health, 12, 295–306.

    Article  CAS  Google Scholar 

  • Saifullah, Sarwar, N., Bibi, S., Ahmad, M., & Ok, Y. S. (2013). Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Environmental Earth Sciences, 71, 1663–1672.

    Article  Google Scholar 

  • Satarug, S., Vesey, D. A., & Gobe, G. C. (2017). Kidney cadmium toxicity, diabetes and high blood pressure: The perfect storm. Tohoku Journal of Experimental Medicine, 241, 65–87.

    Article  CAS  Google Scholar 

  • Schück, M., & Gregor, M. (2020). Plant traits related to the heavy metal removal capacities of wetland plants. International Journal of Phytoremediation, 22(4), 421–435.

    Article  Google Scholar 

  • Schwitzguébel, J. (2001). Hype or hope: The potential of phytoremediation as an emerging green technology. Remediation, 11(4), 63–78.

    Article  Google Scholar 

  • Shahandeh, H., & Hossner, L. R. (2000). Plant screening for chromium phytoremediation. International Journal of Phytoremediation, 2(1), 31–51.

    Article  CAS  Google Scholar 

  • Shamshad, S., Shahid, M., Dumat, C., Rafiq, M., Khalid, S., Sabir, M., Missen, M. M. S., Shah, N. S., Farooq, A. B. U., Murtaza, B., & Niazi, N. K. (2019). A multivariate analysis of health risk assessment, phytoremediation potential, and biochemical attributes of Spinacia oleracea exposed to cadmium in the presence of organic amendments under hydroponic conditions. International Journal of Phytoremediation, 21(5), 461–470.

    Article  CAS  Google Scholar 

  • Sharma, S., Singh, B., & Manchanda, V. K. (2014). Phytoremediation: Roles of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metals contaminated soil and water. Environmental Science and Pollution Research, 22(2), 946–962.

    Article  Google Scholar 

  • Sitarek, M., Napiórkowska-Krzebietke, A., Mazur, R., Czarnecki, B., Pyka, J. P., Stawecki, K., Olech, M., Sołtysiak, S., & Kapusta, A. (2017). Application of effective microorganisms technology as a lake restoration tool – a case study of Muchawka reservoir. Journal of Elementology, 22(2), 529–543.

    Google Scholar 

  • Solanki, P., Narayan, M., Meena, S. S., & Srivastava, R. K. (2018). Floating raft wastewater treatment system: A review. Journal of Pure and Applied Microbiology, 11(2), 1113–1116.

    Article  Google Scholar 

  • Sricoth, T., Meeinkuirt, W., Saengwilai, P., Pichtel, J., & Taeprayoon, P. (2018a). Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environmental Science and Pollution Research, 25(15), 14964–14976.

    Article  CAS  Google Scholar 

  • Sricoth, T., Meeinkuirt, W., Saengwilai, P., Pichtel, J., & Taeprayoon, P. (2018b). Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environmental Science and Pollution Research, 25, 5344–5358.

    Article  CAS  Google Scholar 

  • Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering. https://doi.org/10.1155/2011/939161.

  • Tanhan, P., Kruatrachue, M., Pokethitiyook, P., & Chaiyarat, P. (2007). Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere, 68, 323–329.

    Article  CAS  Google Scholar 

  • Tavakkoli, E., Fatehi, F., Rengasamy, P., & McDonald, G. K. (2012). A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley. Journal of Experimental Botany, 63(10), 3853–3868.

    Article  CAS  Google Scholar 

  • Tkalec, M., Štefanić, P. P., Cvjetko, P., Šikić, S., Pavlica, M., & Balen, B. (2014). The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS One, 9(1), e87582.

    Article  Google Scholar 

  • U.S. EPA (United States Environmental Protection Agency) (1988). Cadmium. Final draft summary report of mineral industrial processing wastes.

  • U.S. EPA (United States Environmental Protection Agency). (2000). Cadmium compounds (A). United States Environmental Protection Acency https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0141_summary.pdf. Accessed 3 May 2021.

  • Vamerali, T., Bandiera, M., & Mosca, G. (2010). Field crops for phytoremediation of metal-contaminated land. A review. Environmental Chemistry Letters, 8, 1–17.

    Article  CAS  Google Scholar 

  • Verma, A., Bharagava, R. N., Kumar, V., Singh, A., Dhusia, N., & More, N. (2016). Role of macrophytes in heavy metal removal through rhizo-filtration in aquatic ecosystem. European Journal of Biotechnology and Bioscience, 4(10), 15–20.

    Google Scholar 

  • Wang, Y., Lv, N., Mao, X., Yan, Z., Wang, J., Tan, W., Li, X., Liu, H., Wang, L., & Xi, B. (2018). Cadmium tolerance and accumulation characteristics of wetland emergent plants under hydroponic conditions. RSC Advances, 8, 33383.

    Article  CAS  Google Scholar 

  • Wu, F. B., Dong, J., Qian, Q. Q., & Zhang, G. P. (2005). Subcellular distribution and chemical form of Cd and Cd–Zn interaction in different barley genotypes. Chemosphere, 60, 1437–1446.

    Article  CAS  Google Scholar 

  • Xin, J., Huang, B., Yang, J., Yang, Z., Yuan, J., & Mu, Y. (2013). Role of roots in cadmium accumulation of two water spinach cultivars: Reciprocal grafting and histochemical experiments. Plant and Soil, 366(1-2), 425–432.

    Article  CAS  Google Scholar 

  • Xiong, T., Dumat, C., Pierart, A., Shahid, M., Kang, Y., Li, N., Bertoni, G., & Laplanche, C. (2016). Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: Field study of soil—plant-atmosphere transfers in urban areas, South China. Environmental Geochemistry and Health, 36(6), 1283–1301.

    Article  Google Scholar 

  • Xu, W., Shi, W., Yan, F., Zhang, B., & Liang, J. (2011). Mechanisms of cadmium detoxification in cattail (Typha angustifolia L.). Aquatic Botany, 94, 37–43.

    Article  CAS  Google Scholar 

  • Yadav, B. K., & Mathur, S. (2008). Modeling soil water extraction by plants using nonlinear dynamic root density distribution function. Journal of Irrigation and Drainage Engineering, 134(4), 430–436.

    Article  Google Scholar 

  • Yadav, B. K., Siebel, M. A., & Van Bruggen, J. J. A. (2011). Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Clean: Soil, Air, Water, 39(5), 467–474.

    CAS  Google Scholar 

  • Yang, Z. D., Yuan, S. B., Liu, X. Q., & Wang, H. Z. (2020). Water level fluctuation requirements of emergent macrophyte Typha angustifolia L. Water, 12, 127.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. John Pichtel and Assoc. Prof. Philip D. Round for revising the manuscript.

Funding

This research was funded by Mahidol University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weeradej Meeinkuirt.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

T. angustifolia is considered a suitable plant for rhizofiltration of Cd and Zn in media

• Bioconcentration factor values > 100 and translocation factor values < 1 for T. angustifolia indicate its excluder potential in hydroponic systems

• The health risk associated with the consumption of contaminated edible aquatic plants depends on the applied form of heavy metals in media

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woraharn, S., Meeinkuirt, W., Phusantisampan, T. et al. Rhizofiltration of Cadmium and Zinc in Hydroponic Systems. Water Air Soil Pollut 232, 204 (2021). https://doi.org/10.1007/s11270-021-05156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05156-6

Keywords

Navigation