Skip to main content

Advertisement

Log in

Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The ability of a mixture of Typha angustifolia and Eichhornia crassipes to remove organics, nutrients, and heavy metals from wastewater from a Thailand fresh market was studied. Changes in physicochemical properties of the wastewater including pH, temperature, chemical oxygen demand, dissolved oxygen, biochemical oxygen demand (BOD), total P, TOC, conductivity, total Kjeldahl nitrogen, NO3 -N, NH3-N, and metal (Pb, Cd, and Zn) concentrations were monitored. In the aquatic plant (AP) treatment, 100% survival of both species was observed. Dry biomass production and growth rate of T. angustifolia were approximately 3.3× and 2.7× of those for E. crassipes, respectively. The extensive root system of the plants improved water quality as determined by a marked decrease in turbidity in the AP treatment after 7 days. BOD content served as a useful indicator of water quality; BOD declined by 91% over 21 days. Both T. angustifolia and E. crassipes accumulated similar quantities of metals in both roots and shoots. Accumulation of metals was as follows: Zn > Cd > Pb. A study of calorific value and biomass composition revealed that T. angustifolia and E. crassipes possessed similar carbon content (~ 35%), hydrogen content (~ 6%), and gross calorific value. E. crassipes contained up to 16.9% ash and 65.4% moisture. Both species are considered invasive in Thailand; however, they may nonetheless provide practical benefits: In addition to their combined abilities to treat wastewater, T. angustifolia holds potential as an alternative energy source due to its high biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ágoston-Szabó E, Dinka M (2008) Decomposition of Typha angustifolia and Phragmites australis in the littoral zone of a shallow lake. Biol Bratislava 63:1104–1110

    Article  Google Scholar 

  • Akowuah J, Kemausuor F, Mitchual JS (2012) Physiochemical characteristics and market potential of sawdust charcoal briquettes. Int J Energy Environ Eng 3:1–6

    Article  CAS  Google Scholar 

  • Al-Hakkak JS, Barbooti MM (1989) Thermogravimetric study on typha (Typha angustifolia L.) J Therm Anal 35(3):815–821. https://doi.org/10.1007/BF02057237

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • AOAC (Association of Official Analytical Chemists) (1995) Official methods of analysis. Arlington

  • APHA, AWWA & WEF (American Public Health Association, American Water Works Association and Water Environment Federation) (2005) Standard methods for examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Ayodo T, Jagero N (2012) The economic, educational and social responsibilities of elders development groups in lake Victoria region. Acad Res Int 2:610–620

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic elements—reviews of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35:11–17

    Article  CAS  Google Scholar 

  • Cálheiros CSC, Rangel AOSS, Castro PML (2007) Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res 41(8):1790–1798. https://doi.org/10.1016/j.watres.2007.01.012

    Article  Google Scholar 

  • Callejón-Ferre AJ, Carreño-Sánchez J, Suárez-Medina FJ, Pérez-Alonso J, Velázquez-Martí B (2014) Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel 116:377–387. https://doi.org/10.1016/j.fuel.2013.08.023

    Article  Google Scholar 

  • Chapman D (1993) Assessment of injury to fish populations: Clark Fork river NPL sites, Montana. In: Lipton J (ed) Aquatic resources injury assessment report, Upper Clark Fork river basin. Montana Natural Resource Damage Assessment Program, Helena

    Google Scholar 

  • Chomchalow N (2011) Giant Salvinia—an invasive alien aquatic plant in Thailand. 62nd Spring Meeting of the International Association of Horticultural Producers (AIPH). Suncheon

  • Chung AKC, Wu Y, Tam NFY, Wong MH (2008) Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater. Ecol Eng 32(1):81–89. https://doi.org/10.1016/j.ecoleng.2007.09.007

    Article  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132(1):29–40. https://doi.org/10.1016/j.envpol.2004.03.030

    Article  CAS  Google Scholar 

  • Department of Environment Malaysia (DOEM) (2009) Environmental quality (sewage) regulations 2009. FAO, Malaysia

    Google Scholar 

  • Dodgen LK, Ueda A, Wu X, Parker DR, Gan J (2015) Effect of transpiration on plant accumulation and translocation of PPCP/EDCs. Environ Pollut 198:144–153. https://doi.org/10.1016/j.envpol.2015.01.002

    Article  CAS  Google Scholar 

  • Dowling R, Stephen K (1995) The use of wetland plants in artificial wetlands in Queenland, wetland for water quality control. Townville

  • Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J, Camper AK, Stein OR (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng 35(6):987–1004. https://doi.org/10.1016/j.ecoleng.2008.12.030

    Article  Google Scholar 

  • Francis-Floyd R (2003) Dissolved oxygen for fish production. Fact Sheet FA-27. U.S. Department of Agriculture, UF/IFAS Extension service, University of Florida, Florida

  • Grace JB, Harrison JS (1986) The biology of Canadian weeds. 73. Typha latifolia L., Typha angustifolia L. and Typha xglauca Godr. Can J Plant Sci 66(2):361–379. https://doi.org/10.4141/cjps86-051

    Article  Google Scholar 

  • Gravalos I, Kateris D, Xyradakis P, Gialamas T, Loutridis S, Augousti A, Georgiades A, Tsiropoulos Z (2010) A study on calorific energy values of biomass residue pellets for heating purposes. 43th International Symposium on Forest Mechanisation: “Forest Engineering: Meeting the Needs of the Society and the Environment”, Padova, Italy

  • Greenway M, Woolley A (2000) Changes in plant biomass and nutrient removal over 3 years in a constructed free water surface flow wetland in Cairns. Water Sci Technol 44:303–310

    Google Scholar 

  • Guan BTH, Mohamat-Yusuff F, Halimoon N (2017) Uptake of Mn and Cd by wild water spinach and their accumulation and translocation factors. Environ Asia 10:44–51

    Google Scholar 

  • Guilizzoni P (1991) The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquat Biol 41(1-3):87–109. https://doi.org/10.1016/0304-3770(91)90040-C

    Article  CAS  Google Scholar 

  • Gwaski P, Hati SS, Ndahi N, Ogugbuaja VO (2013) Modeling parameters of oxygen demand in the aquatic environment of lake chad for depletion estimation. ARPN J Sci Technol 3:116–123

    Google Scholar 

  • Haider H (2010) Water quality management model for Ravi river. Dissertation, Institute of Environmental Engineering and Research, UET, Lahore

  • Hebert PDN (2007) Macrophytes. http://www.eoearth.org/view/article/154336. Accessed 14 July 2017

  • Henry-Silva GG, Camargo AFM (2006) Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents. Sci Agric 63(5):433–438. https://doi.org/10.1590/S0103-90162006000500003

    Article  CAS  Google Scholar 

  • Henry-Silva GG, Camargo AFM (2008) Treatment of shrimp effluents by free-floating aquatic macrophytes. Braz J Anim Sci 37:181–188

    Google Scholar 

  • Hillring B (2006) World trade in forest products and wood fuel. Biomass Bioenergy 30(10):815–825. https://doi.org/10.1016/j.biombioe.2006.04.002

    Article  Google Scholar 

  • Hoagland DR, Arnold DI (1950) The water-culture method of growing plants without soil. The college of Agriculture, University of California, Berkley

    Google Scholar 

  • Horne AJ (2000) Phytoremediation by constructed wetlands. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–108

    Google Scholar 

  • Kaewtubtim P, Meeinkuirt W, Seepom S, Pichtel J (2016) Heavy metal phytoremediation potential of plant species in a mangrove ecosystem in Pattani Bay, Thailand. Appl Ecol Environ Res 14(1):367–382. http://dx.doi.org/10.15666/aeer/1401_367382

  • Kaewtubtim P, Meeinkuirt W, Seepom S, Pichtel J (2017) Radionuclide (226Ra, 232Th, 40K) accumulation among plant species in mangrove ecosystems of Pattani Bay, Thailand. Mar Pollut Bull 115(1-2):391–400. https://doi.org/10.1016/j.marpolbul.2016.12.050

    Article  CAS  Google Scholar 

  • Kanninen J, Kauppi L, Yrjänä ER (1982) The role of nitrogen as a growth limiting factor in the eutrophic lake Vesijärvi, southern Finland. Hydrobiologia 86(1-2):81–85. https://doi.org/10.1007/BF00005791

    Article  CAS  Google Scholar 

  • Kantawanichkul S, Pingkul K, Araki H (2008) Nitrogen removal by a combined subsurface vertical down-flow and up-flow constructed wetland system. In: Vymazal J (ed) Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Springer, Amsterdam, pp 161–170. https://doi.org/10.1007/978-1-4020-8235-1_14

    Chapter  Google Scholar 

  • Kantawanichkul S, Kladpraserta S, Brix H (2009) Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus. Ecol Eng 35(2):238–247. https://doi.org/10.1016/j.ecoleng.2008.06.002

    Article  Google Scholar 

  • Kara Y, Zeytunluoglu A (2007) Bioaccumulation of toxic metals (cd and cu) by Groenlandia densa (L.) Fourr. Bull Environ Contam Toxicol 79(6):609–612. https://doi.org/10.1007/s00128-007-9311-7

    Article  CAS  Google Scholar 

  • Kumar KS, Kumar DS, Teja VA, Venkateswarlu V, Kumar MS, Nadendla RR (2013) A review on Typha angustata. Int J Phytopharm 4:277–281

    Google Scholar 

  • Kyambadde J, Kansiime F, Gumaelius L, Dalhammar G (2004) A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Res 38(2):475–485. https://doi.org/10.1016/j.watres.2003.10.008

    Article  CAS  Google Scholar 

  • Lananan F, Abdul Hamid SH, Din WNS, Ali NA, Khatoon H, Jusoh A, Endut A (2014) Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing effective microorganism (EM-1) and microalgae (Chlorella sp.) Int Biodeterior Biodegrad 95:127–134. https://doi.org/10.1016/j.ibiod.2014.06.013

    Article  CAS  Google Scholar 

  • Landesman L, Fedler C, Duan R (2011) Plant nutrient phytoremediation using duckweed. In: Ansari AA, Sarvajeet SG, Lanza GR, Rast W (eds) Eutrophication: causes, consequences and control. Springer, Netherlands, pp 341–354

    Google Scholar 

  • Larsson EH, Bornman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039. https://doi.org/10.1093/jxb/49.323.1031

  • Li J, Yang X, Wang Z, Shan Y, Zheng Z (2015) Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water. Bioresour Technol 179:1–7. https://doi.org/10.1016/j.biortech.2014.11.053

    Article  CAS  Google Scholar 

  • Liu JT, Sun JJ, Fang SW, Han L, Feng Q, Hu F (2016) Nutrient removal capacities of four submerged macrophytes in the Poyang lake basin. Appl Ecol Environ Res 14(2):107–124. http://dx.doi.org/10.15666/aeer/1402_107124

  • Meeinkuirt W, Sirinawin W, Angsupanich S, Polpunthin P (2008) Changes in relative abundance of phytoplankton in arsenic contaminated waters at the Ron Phibun district of Nakhon Si Thammarat province, Thailand. Int J Algae 10(2):141–162. https://doi.org/10.1615/InterJAlgae.v10.i2.40

    Article  CAS  Google Scholar 

  • Meeinkuirt W, Kruatrachue M, Tanhan P, Chaiyarat R, Pokethitiyook P (2013) Phytostabilization potential of Pb mine tailings by two grass species, Thysanolaena maxima and Vetiveria zizanioides. Water Air Soil Pollut 224(10):1750. https://doi.org/10.1007/s11270-013-1750-7

    Article  Google Scholar 

  • Meeinkuirt W, Kruatrachue M, Pichtel J, Phusantisampan T, Saengwilai P (2016) Influence of organic amendments on phytostabilization of Cd-contaminated soil by Eucalyptus camaldulensis. ScienceAsia 42(2):83–91. https://doi.org/10.2306/scienceasia1513-1874.2016.42.083

    Article  Google Scholar 

  • Menéndez M, Herrera J, Comín FA (2002) Effect of nitrogen and phosphorus supply on growth, chlorophyll content and tissue composition of the macroalga Chaetomorpha linum (O.F. Müll.) Kütz in a Mediterranean coastal lagoon. Sci Mar 66(4):355–364. https://doi.org/10.3989/scimar.2002.66n4355

    Article  Google Scholar 

  • Mishra S, Maiti A (2017) The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res 24(9):7921–7937. https://doi.org/10.1007/s11356-016-8357-7

    Article  CAS  Google Scholar 

  • Mohan BS, Hosetti BB (1997) Potential phytotoxicity of lead and cadmium to Lemna minor growth in sewage stabilization ponds. Environ Pollut 98(2):233–238. https://doi.org/10.1016/S0269-7491(97)00125-5

    Article  CAS  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 22:77–93

    Article  Google Scholar 

  • Mook WT, Chakrabarti MH, Aroua MK, Khan GMA, Ali BS, Islam MS, Abu Hassan MA (2012) Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review. Desalination 285:1–13. https://doi.org/10.1016/j.desal.2011.09.029

    Article  CAS  Google Scholar 

  • Munjeri K, Ziuku S, Maganga H, Siachingoma B, Ndlovu S (2016) On the potential of water hyacinth as a biomass briquette for heating applications. Int J Energy Environ Eng 7:37–43

    Article  CAS  Google Scholar 

  • Nasir NM, Abu Bakar NS, Lananan F, Abdul Hamid SH, Lam SS, Jusoh A (2015) Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting. Bioresour Technol 190:492–498. https://doi.org/10.1016/j.biortech.2015.03.023

    Article  Google Scholar 

  • Ndimele P, Kumolu-Johnson C, Anetekhai M (2011) The invasive aquatic macrophyte, water hyacinth (Eichhornia crassipes (Mart.) Solm-Laubach: Pontedericeae): problems and prospects. Res J Environ Sci 5:509–520

    Article  Google Scholar 

  • Ng YS, Chan DJCC (2017) Wastewater phytoremediation by Salvinia molesta. J Water Process Eng 15:107–115

    Article  Google Scholar 

  • Núñez-Regueira L, Proupín Castiñeiras J, Rodríguez Añon JA (2002) Energy evaluation of forest residues originated from Eucalyptus globulus Labill in Galicia. Bioresour Technol 82(1):5–13. https://doi.org/10.1016/S0960-8524(01)00156-0

    Article  Google Scholar 

  • O’Conner JT (2004) Removal of total organic carbon: a technical review. Part 1 H2O’C Engineering. GAC-Capped Filter, Blooming, Illinois

  • Ojoawo SO, Udaykumar G, Naik P (2015) Phytoremediation of phosphorus and nitrogen with Canna x generalis reeds in domestic wastewater through NMAMIT constructed wetland. Aquat PRO 4:349–356

    Article  Google Scholar 

  • Ol Analytical 2016 Monitoring wastewater treatment plants using on-line TOC analysis. http://www.azom.com/article.aspx?ArticleID=13164. Accessed 18 July 2017

  • Onyango JP, Ondeng MA (2015) The contribution of the multiple usage of water hyacinth on the economic development of riparian communities in Dunga and Kichinjio of Kisumu central sub country, Kenya. Am J Renew Sust Energy 1:128–132

    Google Scholar 

  • Outridge PM, Noller BN (1991) Accumulation of toxic trace elements by freshwater vascular plants. Rev Environ Contam Toxicol 121:1–63

    CAS  Google Scholar 

  • Patel S (2012) Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Rev Environ Sci Biotechnol 11(3):249–259. https://doi.org/10.1007/s11157-012-9289-4

    Article  Google Scholar 

  • Pescod MB (1992) Wastewater treatment and use in agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ravindranath NH, Balachandra P, Dasappa S, Usha RK (2006) Bioenergy technologies for carbon abatement. Biomass Bioenergy 30(10):826–837. https://doi.org/10.1016/j.biombioe.2006.02.003

    Article  Google Scholar 

  • Reddy KR, Kebusk TA (1987) State of the art utilization of aquatic plants in water pollution control. Water Sci Technol 19:61–79

    CAS  Google Scholar 

  • Rezania S, Md Din MF, Kamaruddin SF, Taib SM, Singh L, Yong EL, Dahalan FA (2016) Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production. Energy 111:768–773. https://doi.org/10.1016/j.energy.2016.06.026

    Article  CAS  Google Scholar 

  • Rodrigues AJ, Odero MO, Hayombe PO, Akuno W, Kerich D, Maobe I (2014) Converting water hyacinth to briquettes: a bench community based approach. Int J Sci Basic Appl Res 15:358–378

    Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61(5-6):405–412. https://doi.org/10.1007/s00253-003-1244-4

    Article  CAS  Google Scholar 

  • Sivasankari B, David RA (2016) A study on chemical analysis of water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes). Int J Inno Res Sci Eng Technol 5:17566–17570

    Article  Google Scholar 

  • Srivastava NSL, Narnaware SL, Makwana JP, Singh SN, Vahora S (2014) Investigating the energy use of vegetable market waste by briquetting. Renew Energy 68:270–275. https://doi.org/10.1016/j.renene.2014.01.047

    Article  Google Scholar 

  • Sukumaran D (2013) Phytoremediation of heavy metals from industrial effluent using constructed wetland technology. Appl Ecol Environ Res 1:92–97

    CAS  Google Scholar 

  • Supatata N, Buates J, Hariyanont P (2013) Characterization of fuel briquettes made from sewage sludge mixed with water hyacinth and sewage sludge mixed with sedge. Int J Environ Sci Dev 4:179–181

    Article  Google Scholar 

  • Thomann VR, Mueller AJ (1887) Principals of surface water quality modeling. Harper International Edition, Harper & Row, New York

    Google Scholar 

  • Tong CH, Yang XE, PM P (2004) Purification of eutrophicated water by aquatic plant. Chin J Appl Ecol 15:1447–1450

    CAS  Google Scholar 

  • Torresdey JLG, Videa JRP, Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810

    Article  Google Scholar 

  • Tran TT, Nguyen VD, Do DN, Nguyen HP, Choi J (2011) Assessment of electric power generation via water hyacinths and agricultural waste. J Energy Power Eng 5:627–631

    CAS  Google Scholar 

  • UNEP (United Nations Environment Programme) (1999) Development and harmonization of environmental laws. UNEP/UNDP/Dutch Project on environmental law and institutions in Africa. Volume 2. United Nations, Kenya

  • U.S. EPA (United States Environmental Protection Agency) (2001) A citizen’s guide to phytoremediation. EPA 542-F-12-016. Environmental Protection Agency, United States

  • U.S. EPA (United States Environmental Protection Agency) (2006) Nutrients. EPA-842-B-06-003. http://www.epa.gov/owow/estuaries/monitor/

  • Vaccaro LE, Bedford BL, Johnston CA (2009) Litter accumulation promotes dominance of invasive species of cattails (Typha spp.) in lake Ontario wetlands. Wetlands 29(3):1036–1048. https://doi.org/10.1672/08-28.1

  • Verma R, Suthar S (2015) Lead and cadmium removal from water using duckweed—Lemna gibba L`.: impact of pH and initial metal load. Alexandria Eng J 54:1297–1304

    Article  Google Scholar 

  • Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer, Amsterdam. https://doi.org/10.1007/978-1-4020-8580-2

    Book  Google Scholar 

  • Wang LK, Hung YT, Lo HH, Yapijakis C (2004) Handbook of industrial and hazardous wastes treatment. Marcel Dekker, Inc., New York. https://doi.org/10.1201/9780203026519

    Book  Google Scholar 

  • Zhang CB, Liu WL, Wang J, Ge Y, Ge Y, Chang SX, Chang J (2011) Effects of monocot and dicot types and species richness in mesocosm constructed wetlands on removal of pollutants from wastewater. Bioresour Technol 102(22):10260–10265. https://doi.org/10.1016/j.biortech.2011.08.081

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by Navamindradhiraj University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weeradej Meeinkuirt.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sricoth, T., Meeinkuirt, W., Pichtel, J. et al. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environ Sci Pollut Res 25, 5344–5358 (2018). https://doi.org/10.1007/s11356-017-0813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0813-5

Keywords

Navigation