Skip to main content
Log in

Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) may be toxic to aquatic plants even at modest concentrations, and excessive quantities of zinc (Zn) decrease plant performance. The Cd and Zn phytoremediation potential of several aquatic plant species (Thalia geniculate, Cyperus alternifolius, Canna indica, Eichhornia crassipes, Pistia stratiotes) and one grass species (Vetiveria zizanioides) was evaluated in hydroponic experiments. Vetiveria zizanioides, E. crassipes, and P. stratiotes experienced reduced growth performance in the presence of Cd as determined from biomass production, survival rate, and crown root number (CN); however, they accumulated high quantities of metals in their tissues, particularly in roots. Root accumulation is considered a key characteristic of so-called excluder species. In this study, only E. crassipes and P. stratiotes had bioconcentration factors and translocation factors (> 1000 and < 1, respectively) suitable for high phytostabilization of Cd. Furthermore, V. zizanioides and P. stratiotes showed the highest percent metal uptake from solution and removal capacity for Zn (~70% and ~2 mg d−1 g−1, respectively). Emergent aquatic species (particularly C. alternifolius and T. geniculate) adapted and lived well in Cd- and Zn-contaminated solution and took up high quantities of Cd and Zn in roots, and are therefore considered strong excluders. Beneficial uses of such species in contaminated wetlands include stabilizing toxic metals and limiting erosion. Plant tissue can be applied to other uses, including as a biomass fuel. In field situations, the candidate species may work best when grown together, since each plant genotype possesses a different potential to control Cd and Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aini Syuhaida AW, Norkhadijah SIS, Praveena SM, Suriyani A (2014) The comparison of phytoremediation abilities of water mimosa and water hyacinth. ARPN. J Sci Tech 4:722–731

    Google Scholar 

  • APHA, AWWA and WEF (American Public Health Association, American Water Works Association and Water Environment Federation) (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Arshad M, Ali S, Noman A, Ali Q, Rizwan M, Farid M, Irshad MK (2016) Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Arch Agron Soil Sci (4):533–546

  • Azzi V, Kanso A, Kobeissi A, Kazpard V, Lartiges B, Samrani AE (2015) Effect of cadmium on Lactuca sativa grown in hydroponic culture enriched with phosphate fertilizer. J Environ Proc 6:1337–1346

    Article  CAS  Google Scholar 

  • Bakar AFA, Yusoff I, Fatt NT, Othman F, Ashraf MA (2013) Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata). Biomed Res Int 2013:1–7. https://doi.org/10.1155/2013/890803

    Article  CAS  Google Scholar 

  • Boehknke D, Del Delumyea R (2000) Laboratory experiments in environmental chemistry. Prentice Hall, USA

    Google Scholar 

  • Chayapan P, Kruatrachue M, Meetam M, Pokethitiyook P (2015) Phytoremediation potential of Cd and Zn wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis lam., and Typha angustifolia L. grown in hydroponics. J Environ Biol 36:1179–1183

    CAS  Google Scholar 

  • Dos Santos Utmazian MN, Wieshammer G, Vega R, Wenzel WW (2007) Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut 148:155–165

    Article  CAS  Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neer 41:229–248

    Article  CAS  Google Scholar 

  • Gerrard MA (2008) The ability of vetiver grass to act as a primary purifier of wastewater; an answer to low cost sanitation and freshwater pollution. http://www.vetiver.org/SA_phytoremediation.pdf. Accessed 10 July 2017

  • Greger M (2004) Metal availability, uptake, transport and accumulation in plants. In: Prasad MNV (ed) Heavy metal stress in plants from biomolecules to ecosystems, Springer-Verlag, Berlin

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    Article  CAS  Google Scholar 

  • Gupta P, Roy S, Mahindrakar AB (2012) Treatment of water using water hyacinth, water lettuce and vetiver grass—a review. Resour Environ 2:202–215

    Article  Google Scholar 

  • Herath HMDAK, Bandara DC, Weerasinghe PA, Iqbal MCM, Wijayawardhana HCD (2014) Effect of cadmium on growth parameters and plant accumulation in different rice (Oryza sativa L.) varieties in Sri Lanka. Trop Agric Res 25:532–542

    Article  Google Scholar 

  • Hong CO, Owens VN, Kim YG, Lee SM, Park HC, Kim KK, Son HJ, Suh JM, Kim PJ (2014) Soil pH effect on phosphate induced cadmium precipitation in arable soil. Bull Environ Contam Toxicol 93:101–105

    Article  CAS  Google Scholar 

  • Jakl M, Dytrtová JJ, Miholov á, Kolihová D, Száková J, Tlustoš (2009) Passive diffusion assessment of cadmium and lead accumulation by plants in hydroponic systems. Chem Spec Bioavail 21:111–120

    Article  CAS  Google Scholar 

  • Jiraungkoorskul K, Arphorn S, Tipayamongholgul M, Siriwong W (2016) Cadmium contamination in farmland soil and water near zinc mining site. Kesmas: Natl Public Health J 10:99–103

    Google Scholar 

  • Khan S, Ahmad I, Shah MT, Rehman S, Khaliq A (2009) Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manag 90:3451–3457

    Article  CAS  Google Scholar 

  • Kim IS, Kang KH, Green PJ, Lee EJ (2003) Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ Pollut 126:235–243

    Article  CAS  Google Scholar 

  • Lefévre I (2007) Investigation of three Mediterranean plant species suspected to accumulate and tolerance high cadmium and zinc levels. PhD Dissertation, Université catholique de Louvain, Louvain-la-Neuve, Belgium

  • Li J, Yu H, Luan Y (2015) Meta-analysis of the copper, zinc and cadmium absorption capacities of aquatic plants in heavy metal-polluted water. Int J Environ Res Public Heatlh 12:14958–14973

    Article  CAS  Google Scholar 

  • Liu J, Li K, Xu J, Liang J, Lu X, Yang J, Zhu Q (2003) Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Res 83:271–281

    Article  Google Scholar 

  • Liu L, Sun H, Chen J, Zhang Y, Li D, Li C (2014) Effects of cadmium (Cd) on seedling growth traits and photosynthesis parameters in cotton (Gossypium hirsutum L.) Plant Omics J 7:284–290

    Article  CAS  Google Scholar 

  • Liu JT, Sun JJ, Fang SW, Han L, Feng Q, Hu F (2016) Nutrient removal capacities of four submerged macrophytes in the Poyang lake basin. Appl Ecol Environ Res 14:107–124

    Article  Google Scholar 

  • Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. ScienceAsia 30:93–103

    Article  CAS  Google Scholar 

  • Lux A, Sottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120:537–545

    Article  CAS  Google Scholar 

  • Mateos-Naranjo E, Castellanos E, Perez-Martin AM (2014) Zinc tolerance and accumulation in the halophytic species Juncus acutus. Environ Exp Bot 100:114–121

    Article  CAS  Google Scholar 

  • Meeinkuirt W (2012) Phytostabilization of lead (Pb) in contaminated soil from mine tailings using various plant species. Mahidol University, Bangkok, PhD Dissertation

    Google Scholar 

  • Meeinkuirt W, Kruatrachue M, Pichtel J, Phusantisampan T, Saengwilai P (2016) Influence of organic amendments on phytostabilization of Cd-contaminated soil by Eucalyptus camaldulensis. ScienceAsia 42:83–91

    Article  CAS  Google Scholar 

  • Meeinkuirt W, Kruatrachue M, Tanhan P, Chaiyarat R, Pokethitiyook P (2013) Phytostabilization potential of Pb mine tailings by two grass species, Thysanolaena maxima and Vetiveria zizanioides. Water Air Soil Pollut 224:1750

    Article  CAS  Google Scholar 

  • Memon AR, SchrÖder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environment. Rev Environ Sci Biotechnol 14:277–282

    Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz K (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  CAS  Google Scholar 

  • Mishra S, Maiti A (2017) The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res 24:7921–7937

    Article  CAS  Google Scholar 

  • Muramoto S, Oki Y (1983) Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bull Environ Contam Toxicol 30:170–177

    Article  CAS  Google Scholar 

  • Pataranawat P, Parkpian P, Polprasert C, Delaune RD, Juqsujinda A (2007) Mercury emission and distribution: potential environmental risks at a small-scale gold mining operation, Phichit Province, Thailand. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1081–1093

    Article  CAS  Google Scholar 

  • Peng D, Shafi M, Wang Y, Li S, Yan W, Chen J, Ye Z, Liu D (2015) Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens. Environ Sci Pollut Res 22:14983–14992

    Article  CAS  Google Scholar 

  • Phusantisampan T, Meeinkuirt W, Saengwilai P, Pichtel J, Chaiyarat R (2016) Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: greenhouse and field experiments. Environ Sci Pollut Res 23:20027–20038

    Article  CAS  Google Scholar 

  • Pinto AP, Mota AM, de Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ 326:239–247

    Article  CAS  Google Scholar 

  • Putwattana N, Kruatrachue M, Kumsopa A, Pokethitiyook P (2015) Evaluation of organic and inorganic amendments on maize growth and uptake of Cd and Zn from contaminated paddy soils. Int J Phytoremediat 17:165–174

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Zia-ur-Rehman M, Hannan F, Keller C, Al-Wabel MI, Ok YS (2016a) Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf 130:43–53

    Article  CAS  Google Scholar 

  • Rizwan M, Meunier JD, Davidian JC, Pokrovsky OS, Bovet N, Keller C (2016b) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 33:1414–1427

    Article  CAS  Google Scholar 

  • Rout GR, Das P (2009) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 23:3–11

    Article  Google Scholar 

  • Saengwilai P, Meeinkuirt W, Pichtel J, Koedrith (2017) Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil. Environ Sci Pollut Res 24:15756–15767

    Article  CAS  Google Scholar 

  • Sánchez-CalderÓn L, LÓpez-Bucio J, ChacÓn-LÓpez A, Gutiérrez-Ortega A, Hernández-Abreu E, Herrera-Estrella L (2006) Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiol 140:879–889

    Article  CAS  Google Scholar 

  • Simmons R, Pongsakul P, Saiyasitpanich D, Klinphoklap S (2005) Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ Geochem Health 27:501–511

    Article  CAS  Google Scholar 

  • Songprasert N, Sukaew T, Kusreesakul K, Swaddiwudhipong W, Padungtod C, Bundhamcharoen K (2015) Additional burden of diseases associated with cadmium exposure: a case study of cadmium contaminated rice fields in Mae Sot District, Tak Province, Thailand. Int J Environ Res Public Health 12:9199–9217

    Article  CAS  Google Scholar 

  • Sricoth T, Meeinkuirt W, Pichtel J, Taeprayoon P, Saengwilai P (2018) Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichornia crassipes) and potential as biomass fuel. Environ Sci Pollut Res 25:5344–5358

    Article  CAS  Google Scholar 

  • Srivastava J, Chandra H, Nautiya AR, Kalra JS (2012) Response of C3 and C4 plant systems exposed to heavy metals for phytoextraction at elevated atmospheric CO2 and at elevated temperature. In: Srivastava JK (ed) Environmental contamination. InTech, Croatia

    Chapter  Google Scholar 

  • Street RA, Kulkarni MG, Stirk WA, Southway C, Abdillahi HS, Chinsamy M, Staden JV (2009) Effect of cadmium uptake and accumulation on growth and antibacterial activity of Merwilla plumbea—an extensively used medicinal plant in South Africa. S Afr J Bot 75:611–616

    Article  CAS  Google Scholar 

  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat P (2007) Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere 68:323–329

    Article  CAS  Google Scholar 

  • Tkalec M, Štefanić PP, Cvjetko P, Šikić S, Pavlica M, Balen B (2014) The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS One 9:e87582

    Article  CAS  Google Scholar 

  • Turner P, Turner CL, Watthanaworawit W, Carrara VI, Kapella BK, Painter J, Nosten FH (2010) Influenza in refugees on the Thailand-Myanmar border, May–October 2009. Emerg Infect Dis 16:1366–1372

    Article  Google Scholar 

  • Unhalekhaka U, Kositanont C (2008) Distribution of cadmium in soil around zinc mining area. Thai J Toxicol 23:170–174

    Google Scholar 

  • Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser M (2012) Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ Pollut 163:117–126

    Article  CAS  Google Scholar 

  • Veselý T, Tlustoš P, Száková J (2011) The use of water lettuce (Pistia stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead. Int J Phytoremediat 13:859–872

    Article  CAS  Google Scholar 

  • Vymazal J, Vehla J, Kr Pfelová L, Chrastny V (2007) Trace metals in Phragmites australis and Phalaris Arundinacea growing in constructed and natural wetlands. Sci Total Environ 380:154–162

    Article  CAS  Google Scholar 

  • Wang S, Shi X, Sun H, Chen Y, Pan H, Yang X, Rafiq T (2014) Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead. PLoS One 9:e108568

    Article  CAS  Google Scholar 

  • Weeraprapan P, Phalaraksh C, Chantara S, Kawashima M (2015) Water quality monitoring and cadmium contamination in the sediments of Mae Tao stream, Mae Sot District, Tak Province, Thailand. Int J Environ Sci Dev 6:142–146

    Article  CAS  Google Scholar 

  • Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599–610

    Article  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  CAS  Google Scholar 

  • Zancheta ACF, De Abreu CA, Zambrosi FCB, Erismann ND, LagÔa AMM (2015) Cadmium accumulation by Jack-bean and sorghum in hydroponic culture. Int J Phytoremediat 17:298–303

    Article  CAS  Google Scholar 

  • Zhang CB, Liu WL, Wang J, Ge Y, Chang SX, Chang J (2011) Effects of monocot and dicot types and species richness in mesocosm constructed wetlands on removal of pollutants from wastewater. Bioresour Technol 102:10260–10265

    Article  CAS  Google Scholar 

  • Zhang BY, Zheng JS, Sharp RG (2010) Phytoremediation in engineered wetlands: mechanisms and applications. Proc Environ Sci 2:1315–1325

    Article  Google Scholar 

  • Zou T, Li T, Zhang X, Yu H, Huang H (2012) Lead accumulation and phytostabilization potential of dominant plant species growing in a lead-zinc mine tailing. Environ Earth Sci 65:621–630

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Navamindradhiraj University. Thanks also to Mahidol University for the instrumental analysis and space for lab experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weeradej Meeinkuirt.

Additional information

Responsible editor: Roberto Terzano

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sricoth, T., Meeinkuirt, W., Saengwilai, P. et al. Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environ Sci Pollut Res 25, 14964–14976 (2018). https://doi.org/10.1007/s11356-018-1714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1714-y

Keywords

Navigation