Skip to main content
Log in

Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium is a toxic metallic element that poses serious human health risks via consumption of contaminated agricultural products. The effect of mixtures of dicalcium phosphate and organic amendments, namely cow manure (MD) and leonardite (LD), on Cd and Zn uptake of three rice cultivars (KDML105, KD53, and PSL2) was examined in mesocosm experiments. Plant growth, Cd and Zn accumulation, and physicochemical properties of the test soils were investigated before and after plant harvest. Amendment application was found to improve soil physicochemical properties; in particular, soil organic matter content and nutrient (N, P, K, Ca, and Mg) concentrations increased significantly. The MD treatment was optimal in terms of increasing plant growth; the MD and LD treatments decreased soil Cd concentration by 3.3-fold and 1.6-fold, respectively. For all treatments, all rice cultivars accumulated greater quantities of Cd and Zn in roots compared with panicles and shoots. Among the three cultivars, RD53 accumulated the lowest quantity of Cd. Translocation factors (<0.28) and bioconcentration coefficients of roots (>1) indicate that the three rice cultivars are Cd excluders. Our results suggest that a mixture of organic and inorganic amendments can be used to enhance rice growth while reducing accumulation of heavy metals when grown in contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad HR, Ghafoor A, Corwin DL, Aziz MA, Saifullah SM (2011) Organic and inorganic amendments affect soil concentration and accumulation of cadmium and lead in wheat in calcareous alkaline soils. Commun Soil Sci Plant Anal 42:111–122

    Article  CAS  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants. Bioresour Technol 79:273–276

    Article  CAS  Google Scholar 

  • Allen SE, Grimshaw HM, Parkinson HM, Quarmby JA (1974) Chemical analysis of ecological materials. Blackwell, Oxford

  • APHA, AWWA and WEF (American Public Health Association, American Water Works Association and Water Environment Federation) (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Arao T, Ae N (2003) Genotypic variations in cadmium levels of rice grain. Soil Sci Plant Nutr 49:473–479

    Article  CAS  Google Scholar 

  • Armstrong W (1964) Oxygen diffusion from the roots of some British bog plants. Nature 204:801–802

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulator and excluder—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

  • Black GR (1965) Bulk density: method of soil analysis. Monograph no. 9 part I. American Society of Agronomy Inc, Washington, DC

    Book  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1977) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. In: Sparks DL (ed) Advances in agronomy. Academic Press, New York, pp 145–204

    Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Broughton PL (1972) Identification of leonardite, a naturally oxidized lignite, by low-angle x-ray scattering method. J Sediment Res 42:356–358

    CAS  Google Scholar 

  • Buresh RJ, Reddy KR, van Kessel C (2008) Nitrogen transformations in submerged soils. In: Schepers JS, Raun WR (eds) Nitrogen in agricultural systems, Agronomy monograph, vol 49. American Society of Agronomy, Madison, WI, USA, pp 401–436

    Google Scholar 

  • Chaiwonga S, Sthiannopokao S, Supanpaiboon W, Chuenchoojit S, Pupatwibul K, Poodendaen C (2013) Urinary cadmium concentrations in a population downstream: from a zinc mining area in Mae Sot district, Tak province, Thailand. Environ. Geochem Hlth 35:69–78

    Article  CAS  Google Scholar 

  • Chaiyarat R, Suebsima R, Putwattana N, Kruatrachue M, Pokethitiyook P (2011) Effects of soil amendments on growth and metal uptake by Ocimum gratissimum grown in cd/Zn-contaminated soil. Water Air Soil Pollut 214:383–392

    Article  CAS  Google Scholar 

  • Chammui Y, Sooksamiti P, Naksata W, Thiansem S, Arqueropanyo O (2014) Removal of arsenic from aqueous solution by adsorption on leonardite. Chem Eng J 240:202–210

    Article  CAS  Google Scholar 

  • Chaney RL, Ryan JA, Li YM, Welch RM, Reeves PG, Brown SL, Green CE (1996) Phyto-availability and bio-availability in risk assessment for cadmium in agricultural environments. OECD proceedings Sources of Cadmium in the Environment. OECD, Stockholm, Sweden, pp 49–78

    Google Scholar 

  • Chen Y, Shen Z, Li X (2004) The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19:1553–1565

  • Chen RF, Shen RF, Gu P, Dong XY, Du CW, Ma JF (2006) Response of rice (Oryza sativa L.) with root surface iron plaque under aluminium stress. Ann Bot 98:389–395

    Article  CAS  Google Scholar 

  • Chotpantarat S, Ong SK, Sutthirat C, Osathaphan K (2008) Heavy metal contamination of groundwater and surrounding soils by tailing leachates from a gold mine in Thailand. J Sci Res 33:101–112

    CAS  Google Scholar 

  • Conesa HM, Moradi AB, Robinson BH, Kuhne G, Lehmann E, Schulin R (2009) Response of native grasses and Cicer arietinum to soil polluted with mining wastes: implications for the management of land adjacent to mine sites. Environ Exp Bot 65:198–204

    Article  CAS  Google Scholar 

  • Daskalakis KD, Helz GR (1992) Solubility of CdS (greenockite) in sulfidic waters at 25°C. Environ Sci Technol 26:2462–2468

    Article  CAS  Google Scholar 

  • De Knecht JA, Van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris (chain length distribution and sulphide incorporation). Plant Physiol 104:255–261

    Article  CAS  Google Scholar 

  • De Oliveira Souza LW, Moretti ADA, Tucci FM, de Zouza NH, Leal PAM, Anzai NH (2009) Phosphorus availability of rock phosphates as compared with feed-grade phosphates for swine. R Bras Zootec 38:90–98

    Article  Google Scholar 

  • Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    Article  CAS  Google Scholar 

  • Fan J, Hu Z, Xia NZ, Wu C (2010) Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.) Environ Pollut 158:409–415

    Article  CAS  Google Scholar 

  • Fasahat P (2015) Recent progress in understanding cadmium toxicity and tolerance in rice. Emir J Food Agric 27:94–105

    Article  Google Scholar 

  • Iimura K (1981) Chemical forms and behaviour of heavy metals in soils. In: Kitagishi K, Yamane I (eds) Heavy metal pollution in soils of Japan. Japan Scientific Societies Press, Tokyo, pp 23–55

    Google Scholar 

  • Impellitteri CA, Lu YF, Saxe JK, Allen HE, Peijnenburg WJGM (2002) Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environ Int 28:401–410

    Article  CAS  Google Scholar 

  • Ji HS, Gururani MA, Chun S (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2004) Soil–plant transfer of trace elements—an environmental issue. Geoderma 122:143–149

    Article  CAS  Google Scholar 

  • Kaewnate Y, Niyomtam S, Tangvarasittichai O, Meemark S, Pingmuangkaew P, Tangvarasittichai S (2012) Association of elevated urinary cadmium with urinary stone, hypercalciuria and renal tubular dysfunction in the population of cadmium-contaminated area. Bull Environ Contam Toxico 89:1120–1124

    Article  CAS  Google Scholar 

  • Kaplan DI, Adriano DC, Carlson CL, Sajwan KS (1990) Vanadium: toxicity and accumulation by beans. Water Air Soil Pollut 49:81–91

    Article  CAS  Google Scholar 

  • Kashem MA, Singh BR (2001) Metal availability in contaminated soils: II. Uptake of Cd, Ni and Zn in rice plants grown under flooded culture with organic matter addition. Nutr Cycl Agroecosys 61:257–266

    Article  CAS  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252:151–167

    Article  CAS  Google Scholar 

  • Liu R, Altschul EB, Hedin RS, Nakles DV, Dzombak DA (2014) Sequestration enhancement of metals in soils by addition of iron oxides recovered from coal mine drainage sites. Soil Sediment Contam 23:374–388

    Article  CAS  Google Scholar 

  • Lorestani B, Yousefi N, Cheraghi M, Farmany A (2013) Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site. Environ Monit Assess 185:10217–10223

    Article  CAS  Google Scholar 

  • Meeinkuirt W, Pokethitiyook P, Kruatrachue M, Tanhan P, Chaiyarat R (2012) Phytostabilization of lead by various tree species using pot and field trial experiments. Int J Phytoremdiat 14:925–938

    Article  Google Scholar 

  • Meeinkuirt W, Kruatrachue M, Tanhan P, Chaiyarat R, Pokethitiyook P (2013) Phytostabilization potential of Pb mine tailings by two grass species, Thysanolaena maxima and Vetiveria zizanioides. Water Air Soil Pollut 224:1750

    Article  Google Scholar 

  • Meeinkuirt W, Kruatrachue M, Pichtel J, Phusantisampan T, Saengwilai P (2016) Influence of organic amendments on phytostabilization of Cd-contaminated soil by Eucalyptus camaldulensis. ScienceAsia 42:83–91

    Article  Google Scholar 

  • Mohebbi AH, Harutyunyan SS, Chorom M (2012) Phytoremediation potential of three plant grown in monoculture and intercropping with date palm in contaminated soil. Int J Agri Crop Sci 4:1523–1530

    Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2005) Mercury volatilisation and phytoextraction from base-metal mine tailings. Environ Pollut 136:341–352

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Meharg AA, Smolders E, Manzano R, Becerra D, Sánchez-Llerena J, Albarrán Á, López-Piñero A (2014) Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Sci Total Environ 485-486:468–473

    Article  Google Scholar 

  • Murakami M, Ae N (2009) Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.) J Hazard Mater 162:1185–1192

    Article  CAS  Google Scholar 

  • Nardi S, Carletti P, Pizzeghello D, Muscolo A (2009) Biological activities of humic substances in biophysicochemical processes involving natural nonliving organic matter in environmental systems. In: Senesi N, Xing B, Huang PM (eds) Part I. Fundamentals and impact of mineral-organicbiota interactions on the formation, transformation, turnover, and storage of natural nonliving organic matter (NOM). John Wiley, Hoboken, NJ, USA

    Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  Google Scholar 

  • Park JH, Panneerselvam P, Lamb D, Choppala G, Bolan NS (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185:549–574

    Article  CAS  Google Scholar 

  • Phaenark C, Pokethitiyook P, Kruatrachue M, Ngernsansaruay C (2009) Cd and Zn accumulation in plants from the Padaeng zinc mine area. Int J Phytoremdiat 11:479–495

    Article  CAS  Google Scholar 

  • Phusantisampan T, Meeinkuirt W, Saengwilai P, Pichtel J, Chaiyarat R (2016) Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: greenhouse and field experiments. Environ Sci Pollut Res 23:20027–20038

    Article  CAS  Google Scholar 

  • Pillai SS, Girija N, Williams GP, Koshy M (2013) Impact of organic manure on the phytoremediation potential of Vetivieria zizanioides in chromium-contaminated soil. Chem Ecol 29:270–279

    Article  CAS  Google Scholar 

  • Pongsakul P, Attajarusit S (1999) Assessment of heavy metals in soils. Thai J Soils Fert 21:71–82 (In Thai)

    Google Scholar 

  • Prasad MNV, Nakbanpote W, Sebastian A, Natthawoot P, Phadermrod C (2015) Phytomanagement of Padaeng zinc mine waste, Mae Sot district, Tak province, Thailand. In: Hakeem KR, Sabir M, Ozturk M, Murmut A (eds) Soil remediation and plants. Academic Press, London, pp 661–687

    Chapter  Google Scholar 

  • Putwattana N, Kruatrachue M, Kumsopa A, Pokethitiyook P (2015) Evaluation of organic and inorganic amendments on maize growth and uptake of Cd and Zn from contaminated paddy soils. Int J Phytoremdiat 17:165–174

    Article  CAS  Google Scholar 

  • Rafiq MT, Aziz R, Yang XE, Xiao WD, Rafiq MK, Ali B, Li TQ (2014) Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicol Environ Saf 103:101–107

    Article  CAS  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna

  • Romkens P, Guo H, Chu C, Liu T, Chiang C, Koopmans G (2009) Prediction of cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines. Environ Pollut 157:2435–2444

    Article  CAS  Google Scholar 

  • Römkens PFAM, Brus DJ, Guo HY, Chu CL, Chiang CM, Koopmans GF (2011) Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields. Sci Total Environ 409:3098–3105

    Article  Google Scholar 

  • Rotkittikhun P, Chaiyarat R, Kruatrachue M, Pokethitiyook P, Baker AJM (2007) Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Chemosphere 66:45–53

    Article  CAS  Google Scholar 

  • Rout G, Das P (2009) Effect of metal toxicity on plant growth and metabolism: I. Zinc. In: Lichtfouse E, Navarrete M, Debaeke P, Souchère V, Alberola C (eds) Sustainable Agriculture. Springer, France, pp 3–11

    Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sappin-Didier V, Vansuyts G, Mench M, Briat J (2005) Cadmium availability at different soil pH to transgenic tobacco overexpressing ferritin. Plant Soil 270:189–197

    Article  CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulator in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Sparks DL (1996) Methods of soil analysis. Part 3. Chemical methods. Book series, vol 5. Soil Science Society of America, Wisconsin

    Google Scholar 

  • Sriprachote A, Kanyawongha P, Ochiai K, Matoh T (2012a) Current situation of cadmium-polluted paddy soil, rice and soybean in the Mae Sot District, Tak Province, Thailand. Soil Sci Plant Nutr 58:349–359

    Article  CAS  Google Scholar 

  • Sriprachote A, Kanyawongha P, Pantuwan G, Ochiai K, Matoh T (2012b) Evaluation of Thai rice cultivars with low-grain cadmium. Soil Sci Plant Nutr 58:568–572

    Article  CAS  Google Scholar 

  • Stoltzfus J, So R, Malarvizhi PP, Ladha JK, de Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

    Article  CAS  Google Scholar 

  • Swaddiwudhipong W, Mahasakpan P, Limpatanachote P, Krintratun S (2011) An association between urinary cadmium and urinary stone disease in persons living in cadmium-contaminated villages in northwestern Thailand: a population study. Environ Res 111:579–583

    Article  CAS  Google Scholar 

  • Tang H, Li T, Yu H, Zhang X (2016) Cadmium accumulations characteristics and removal potentials of high cadmium accumulating rice line grown in cadmium-contaminated soils. Environ Sci Pollut Res 23:15351–15357

    Article  CAS  Google Scholar 

  • Thomas PR, Buck J (1999) Agronomic management for phytoremediation. In: Leeson A, Alleman BC (eds) Phytoremediation and innovative strategies for specialized remedial applications. Battele Press, Columbus, Ohio, pp 115–120

    Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci U S A 107:16500–16505

    Article  CAS  Google Scholar 

  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688

    Article  CAS  Google Scholar 

  • Walkley A, Black CA (1934) An examination of degradation method for determining soil organic matter: a proposed modification of the chromic acid titration method. Soil Sci 37:29–35

    Article  CAS  Google Scholar 

  • Wang W, Wang W (2016) Phase partitioning of trace metals in a contaminated estuary influenced by industrial effluent discharge. Environ Pollut 214:35–44

    Article  CAS  Google Scholar 

  • Yang WY (2002) An introduction to agronomy. Chinese Agricultural Press, China, Beijing

    Google Scholar 

  • Zachara JM, Smith SC, Resch CT, Cowan CE (1992) Cadmium sorption on silicates and oxides. Soil Sci Soc Am J 56:1074–1084

    Article  CAS  Google Scholar 

  • Zhan J, Wei S, Niu R (2012) Selection of Cd-excluder rice in Shenyang region of China for food safety. Adv Mater Res 518-523:1033–1039

    Article  CAS  Google Scholar 

  • Zhan J, Wei S, Niu R, Li Y, Wang S, Zhu J (2013) Identification of rice cultivar with exclusive characteristic to Cd using a field-polluted soil and its foreground application. Environ Sci Pollut Res 20:2645–2650

  • Zu YQ, Li Y, Chen JJ, Chen HY, Qin L, Schvartz C (2005) Hyperaccumulation of Pb, Zn, and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762

Download references

Acknowledgements

This research project is supported by Mahidol University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weeradej Meeinkuirt.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saengwilai, P., Meeinkuirt, W., Pichtel, J. et al. Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil. Environ Sci Pollut Res 24, 15756–15767 (2017). https://doi.org/10.1007/s11356-017-9157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9157-4

Keywords

Navigation