Skip to main content

Advertisement

Log in

Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas, South China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil–plant–atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg−1): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China’s Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60–79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam, M. G. M., Snow, E. T., & Tanaka, A. (2003). Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. The Science of the Total Environment, 308(1–3), 83–96. doi:10.1016/S0048-9697(02)00651-4.

    Article  CAS  Google Scholar 

  • Austruy, A., Shahid, M., Xiong, T., Castrec, M., Payre, V., Niazi, N. K., et al. (2014). Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: Environmental and sanitary consequences. Journal of Soils and Sediments, 14(4), 666–678. doi:10.1007/s11368-014-0862-z.

    Article  Google Scholar 

  • Beccaloni, E., Vanni, F., Beccaloni, M., & Carere, M. (2013). Concentrations of arsenic, cadmium, lead and zinc in homegrown vegetables and fruits: Estimated intake by population in an industrialized area of Sardinia, Italy. Microchemical Journal, 107, 190–195. doi:10.1016/j.microc.2012.06.012.

    Article  CAS  Google Scholar 

  • Bergqvist, C., Herbert, R., Persson, I., & Greger, M. (2014). Plants influence on arsenic availability and speciation in the rhizosphere, roots and shoots of three different vegetables. Environmental Pollution (Barking, Essex: 1987), 184, 540–546. doi:10.1016/j.envpol.2013.10.003.

    Article  CAS  Google Scholar 

  • Birbaum, K., Brogioli, R., Schellenberg, M., Martinoia, E., Stark, W. J., Günther, D., & Limbach, L. K. (2010). No evidence for cerium dioxide nanoparticle translocation in maize plants. Environmental Science and Technology, 44(22), 8718–8723. doi:10.1021/es101685f.

    Article  CAS  Google Scholar 

  • Bu-Olayan, A. H., & Thomas, B. V. (2009). Translocation and bioaccumulation of trace metals in desert plants of Kuwait Governorates. Research Journal of Environmental Sciences,. doi:10.3923/rjes.2009.581.587.

    Google Scholar 

  • Buonanno, G., & Morawska, L. (2014). Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens. Waste Management, 37, 75–81. doi:10.1016/j.wasman.2014.03.008.

    Article  Google Scholar 

  • Cao, H., Chen, J., Zhang, J., Zhang, H., Qiao, L., & Men, Y. (2010). Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. Journal of Environmental Sciences, 22(11), 1792–1799. doi:10.1016/S1001-0742(09)60321-1.

    Article  CAS  Google Scholar 

  • Cave, M., Wragg, J., Klinck, B., Grön, C., Oomen, T., Van de Wiele, T., Ollson, K., Reimer, N., Basta, N., Tack, K., & Casteel, S. (2006). Preliminary assessment of a unified bioaccessibility method for Arsenic in soils. In International conference in Epidemiology and Environmental Exposure. Paris, 2–6 September 2006.

  • Chang, C. Y., Yu, H. Y., Chen, J. J., Li, F. B., Zhang, H. H., & Liu, C. P. (2014). Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environmental Monitoring and Assessment, 186(3), 1547–1560. doi:10.1007/s10661-013-3472-0.

    Article  CAS  Google Scholar 

  • Columbus, M. P., & Macfie, S. M. (2015). It takes an individual plant to raise a community: TRFLP analysis of the rhizosphere microbial community of two pairs of high- and low-metal-accumulating plants. Soil Biology & Biochemistry, 81, 77–80. doi:10.1016/j.soilbio.2014.11.002.

    Article  CAS  Google Scholar 

  • Council Directive 96/62/EC. (1996). On ambient air quality assessment and management (The Framework Directive). From the Official Journal of the European Communities, 21.11.1996, En Series, L296/55.

  • Council Directive 1999/30/EC (1999). Relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air (The First Daughter Directive). From the Official Journal of the European Communities, 29.6.1999, En Series, L163/41.

  • De Flora, S., Camoirano, A., Bagnasco, M., Bennicelli, C., Corbett, G. E., & Kerger, B. D. (1997). Estimates of the chromium(VI) reducing capacity in human body compartments as a mechanism for attenuating its potential toxicity and carcinogenicity. Carcinogenesis, 18(3), 531–537. doi:10.1093/carcin/18.3.531.

    Article  Google Scholar 

  • Douay, F., Roussel, H., Pruvot, C., Loriette, A., & Fourrier, H. (2008). Assessment of a remediation technique using the replacement of contaminated soils in kitchen gardens nearby a former lead smelter in Northern France. The Science of the Total Environment, 401(1–3), 29–38. doi:10.1016/j.scitotenv.2008.03.025.

    Article  CAS  Google Scholar 

  • Dumat, C., Quenea, K., Bermond, A., Toinen, S., & Benedetti, M. F. (2006). Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils. Environmental Pollution (Barking, Essex: 1987), 142(3), 521–529. doi:10.1016/j.envpol.2005.10.027.

    Article  CAS  Google Scholar 

  • European Commission (2003). Proposal for a directive of the European parliament and of the council relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Brussels. 16.7.2003 COM (2003) 423 final. 2003/0164 (COD). http://europa.eu.int/eurlex/en/com/pdf/2003/com2003_0423en01.pdf.

  • European Commission. (2006a). Commission regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, 364, 5–24.

    Google Scholar 

  • European Commission. (2006). Regulation (EC) 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals. http://ec.europa.eu/enterprise/sectors/chemicals/documents/reach/index_en.htm.

  • European Commission. (2015). Commission Regulation (EU) 2015/1005 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs. Official Journal of the European Communities, 161, 9–13.

    Google Scholar 

  • Fernández Espinosa, A. J., & Rossini Oliva, S. (2006). The composition and relationships between trace element levels in inhalable atmospheric particles (PM10) and in leaves of Nerium oleander L. and Lantana camara L. Chemosphere, 62(10), 1665–1672. doi:10.1016/j.chemosphere.2005.06.038.

    Article  Google Scholar 

  • Foucault, Y., Durand, M.-J., Tack, K., Schreck, E., Geret, F., Leveque, T., et al. (2013a). Use of ecotoxicity test and ecoscores to improve the management of polluted soils: Case of a secondary lead smelter plant. Journal of Hazardous Materials, 246–247, 291–299. doi:10.1016/j.jhazmat.2012.12.042.

    Article  Google Scholar 

  • Foucault, Y., Lévêque, T., Xiong, T., Schreck, E., Austruy, A., Shahid, M., & Dumat, C. (2013b). Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere, 93(7), 1430–1435. doi:10.1016/j.chemosphere.2013.07.040.

    Article  CAS  Google Scholar 

  • Frey, B. (2010). Duncan’s multiple range test. In N. Salkind (Ed.), Encyclopedia of research design (pp. 395–396). Thousand Oaks, CA: SAGE Publications Inc.

    Google Scholar 

  • GB13106-91. (1991). Limit value for contaminants in foods. China: National Food Safety Standards.

    Google Scholar 

  • GB15199-94. (1994). Limit value for contaminants in foods. China: National Food Safety Standards.

    Google Scholar 

  • GB15618-2008. (2008). Environmental quality standards for soils. China: Ministry of Environmental Protection.

    Google Scholar 

  • GB2762-2012. (2012). Limit value for contaminants in foods. China: National Food Safety Standards.

    Google Scholar 

  • Gron, C., & Andersen, L. (2003). Human bioaccessibility of heavy metals and PAH from soil. Copenhagen: Danish Environmental Protection Agency.

    Google Scholar 

  • Guerin, A., Proix, N., & Richard, A. (2015). Use of an in vitro digestion method to estimate human bioaccessibility of Cd in vegetables grown in smelter-impacted soils: The influence of cooking. Environmental Geochemistry and Health,. doi:10.1007/s10653-015-9684-1.

    Google Scholar 

  • Guo, Z.-X., Wang, J., Chai, M., Chen, Z.-P., Zhan, Z.-S., Zheng, W.-P., & Wei, X.-G. (2011). Spatiotemporal variation of soil pH in Guangdong Province of China in past 30 years. Ying yong sheng tai xue bao, 22(2), 425–430. http://europepmc.org/abstract/med/21608257.

  • Hamel, S. C., Buckley, B., & Lioy, P. J. (1998). Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid. Environmental Science and Technology, 32(3), 358–362. doi:10.1021/es9701422.

    Article  CAS  Google Scholar 

  • Han, D., Zhang, X., Tomar, V. V. S., Li, Q., Wen, D., & Liang, W. (2009). Effects of heavy metal pollution of highway origin on soil nematode guilds in North Shenyang, China. Journal of Environmental Sciences, 21(2), 193–198. doi:10.1016/S1001-0742(08)62250-0.

    Article  CAS  Google Scholar 

  • Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259–266. doi:10.1016/j.pbi.2009.05.006.

    Article  Google Scholar 

  • Harrison, R. M., & Yin, J. (2010). Chemical speciation of PM2.5 particles at urban background and rural sites in the UK atmosphere. Journal of environmental monitoring JEM, 12(7), 1404–1414. doi:10.1039/c000329h.

    Article  CAS  Google Scholar 

  • Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 237, 173–195. doi:10.1023/A:1013351617532.

    Article  CAS  Google Scholar 

  • HJ T332-2006. (2006). China’s Environmental quality evaluation standards for farmland of edible agriculture products.

  • Hong, J., Peralta-Videa, J. R., Rico, C., Sahi, S., Viveros, M. N., Bartonjo, J., et al. (2014). Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environmental Science and Technology, 48(8), 4376–4385. doi:10.1021/es404931g.

    Article  CAS  Google Scholar 

  • Hu, C.-W., Chao, M.-R., Wu, K.-Y., Chang-Chien, G.-P., Lee, W.-J., Chang, L. W., & Lee, W.-S. (2003). Characterization of multiple airborne particulate metals in the surroundings of a municipal waste incinerator in Taiwan. Atmospheric Environment, 37(20), 2845–2852. doi:10.1016/S1352-2310(03)00208-5.

    Article  CAS  Google Scholar 

  • Hu, X., Zhang, Y., Luo, J., Xie, M., Wang, T., & Lian, H. (2011). Accumulation and quantitative estimates of airborne lead for a wild plant (Aster subulatus). Chemosphere, 82(10), 1351–1357. doi:10.1016/j.chemosphere.2010.11.079.

    Article  CAS  Google Scholar 

  • Huang, M., Wang, W., Chan, C. Y., Cheung, K. C., Man, Y. B., Wang, X., & Wong, M. H. (2014). Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal(loid)s in outdoor and indoor particles from urban centers of Guangzhou, China. The Science of the Total Environment, 479–480, 117–124. doi:10.1016/j.scitotenv.2014.01.115.

    Article  Google Scholar 

  • JECFA (2011). Evaluation of certain food additive and contaminants. Geneva, Joint FAO/WHO Expert Committed on Food Additives, WHO Technical Report Series, No. 960.

  • Johansson, C., Norman, M., & Burman, L. (2009). Road traffic emission factors for heavy metals. Atmospheric Environment, 43(31), 4681–4688. doi:10.1016/j.atmosenv.2008.10.024.

    Article  CAS  Google Scholar 

  • Kachenko, A., & Singh, B. (2004). The Regional Institute—Heavy metals contamination of home grown vegetables near metal smelters in NSW. In Supersoil-Symposium 3: Contaminant bioavailability and terrestrial ecotoxicology, Oral Papers. http://regional.org.au/au/asssi/supersoil2004/s3/oral/1537_kachenkoa.htm.

  • Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., et al. (2014). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials, 264, 98–106. doi:10.1016/j.jhazmat.2013.10.053.

    Article  CAS  Google Scholar 

  • Leveque, T., Capowiez, Y., Schreck, E., Xiong, T., Foucault, Y., & Dumat, C. (2014). Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils. Environmental Pollution, 191, 199–206. doi:10.1016/j.envpol.2014.04.005.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014a). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853. doi:10.1016/j.scitotenv.2013.08.090.

    Article  Google Scholar 

  • Li, J., Wei, Y., Zhao, L., Zhang, J., Shangguan, Y., Li, F., & Hou, H. (2014b). Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Ecotoxicology and Environmental Safety, 110, 308–315. doi:10.1016/j.ecoenv.2014.09.009.

    Article  CAS  Google Scholar 

  • Luo, X.-S., Ding, J., Xu, B., Wang, Y.-J., Li, H.-B., & Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. The Science of the total Environment, 424, 88–96. doi:10.1016/j.scitotenv.2012.02.053.

    Article  CAS  Google Scholar 

  • Mombo, S., Foucault, Y., Deola, F., Gaillard, I., Goix, S., Shahid, M., et al. (2015). Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. Journal of Soils and Sediments,. doi:10.1007/s11368-015-1069-7.

    Google Scholar 

  • Moreno, T., Querol, X., Alastuey, A., de la Rosa, J., Sánchez de la Campa, A. M., Minguillón, M., et al. (2010). Variations in vanadium, nickel and lanthanoid element concentrations in urban air. The Science of the total environment, 408(20), 4569–4579. doi:10.1016/j.scitotenv.2010.06.016.

    Article  CAS  Google Scholar 

  • Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179(3), 154–163. doi:10.1016/j.plantsci.2010.04.012.

    Article  CAS  Google Scholar 

  • Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution (Barking, Essex: 1987), 150(1), 5–22. doi:10.1016/j.envpol.2007.06.006.

    Article  CAS  Google Scholar 

  • NY/T 391-2000. (2000). Environmental technical terms for green food production area, China.

  • Page, V., Weisskopf, L., & Feller, U. (2006). Heavy metals in white lupin: Uptake, root-to-shoot transfer and redistribution within the plant. The New Phytologist, 171(2), 329–341. doi:10.1111/j.1469-8137.2006.01756.x.

    Article  CAS  Google Scholar 

  • Pagotto, C., Rémy, N., Legret, M., & Le Cloirec, P. (2001). Heavy metal pollution of road dust and roadside soil near a major rural highway. Environmental Technology, 22(3), 307–319. doi:10.1080/09593332208618280.

    Article  CAS  Google Scholar 

  • Pascaud, G., Leveque, T., Soubrand, M., Boussen, S., Joussein, E., & Dumat, C. (2014). Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: Solid speciation and bioaccessibility. Environmental Science and Pollution Research International, 21(6), 4254–4264. doi:10.1007/s11356-013-2297-2.

    Article  CAS  Google Scholar 

  • Peijnenburg, W. J. G. M., & Jager, T. (2003). Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicology and Environmental Safety, 56(1), 63–77. doi:10.1016/S0147-6513(03)00051-4.

    Article  CAS  Google Scholar 

  • Pelfrêne, A., Douay, F., Richard, A., Roussel, H., & Girondelot, B. (2013). Assessment of potential health risk for inhabitants living near a former lead smelter. Part 2: Site-specific human health risk assessment of Cd and Pb contamination in kitchen gardens. Environmental Monitoring and Assessment, 185(4), 2999–3012. doi:10.1007/s10661-012-2767-x.

    Article  Google Scholar 

  • Piatak, N. M., Seal, R. R., & Hammarstrom, J. M. (2004). Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites. Applied Geochemistry, 19(7), 1039–1064. doi:10.1016/j.apgeochem.2004.01.005.

    Article  CAS  Google Scholar 

  • Pierart, A., Shahid, M., Séjalon-Delmas, N., & Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials, 289, 219–234. doi:10.1016/j.jhazmat.2015.02.011.

    Article  CAS  Google Scholar 

  • Roberts, R. J., & Chen, M. (2006). Waste incineration–how big is the health risk? A quantitative method to allow comparison with other health risks. Journal of Public Health (Oxford, England), 28(3), 261–266. doi:10.1093/pubmed/fdl037.

    Article  Google Scholar 

  • Samaj, J., Baluska, F., Voigt, B., Schlicht, M., Volkmann, D., & Menzel, D. (2004). Endocytosis, actin cytoskeleton, and signaling. Plant Physiology, 135(3), 1150–1161. doi:10.1104/pp.104.040683.

    Article  CAS  Google Scholar 

  • Sasmaz, A., Obek, E., & Hasar, H. (2008). The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecological Engineering, 33(3–4), 278–284. doi:10.1016/j.ecoleng.2008.05.006.

    Article  Google Scholar 

  • Schreck, E., Foucault, Y., Sarret, G., Sobanska, S., Cécillon, L., Castrec-Rouelle, M., et al. (2012). Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. The Science of the Total Environment, 427–428, 253–262. doi:10.1016/j.scitotenv.2012.03.051.

    Article  Google Scholar 

  • Schreck, E., Laplanche, C., Le Guédard, M., Bessoule, J.-J., Austruy, A., Xiong, T., et al. (2013). Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure. Environmental Pollution (Barking, Essex: 1987), 179, 242–249. doi:10.1016/j.envpol.2013.04.024.

    Article  CAS  Google Scholar 

  • Shahid, M., Pinelli, E., & Dumat, C. (2012). Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. Journal of Hazardous Materials, 219–220, 1–12. doi:10.1016/j.jhazmat.2012.01.060.

    Article  Google Scholar 

  • Shahid, M., Xiong, T., Castrec-Rouelle, M., Leveque, T., & Dumat, C. (2013). Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. Journal of Environmental Sciences, 25(12), 2451–2459. doi:10.1016/S1001-0742(12)60197-1.

    Article  CAS  Google Scholar 

  • Shahid, M., Xiong, T., Masood, N., Leveque, T., Quenea, K., Austruy, A., et al. (2014). Influence of plant species and phosphorus amendments on metal speciation and bioavailability in a smelter impacted soil: A case study of food-chain contamination. Journal of Soils and Sediments, 14(4), 655–665. doi:10.1007/s11368-013-0745-8.

    Article  Google Scholar 

  • Sternbeck, J., Sjödin, Å., & Andréasson, K. (2002). Metal emissions from road traffic and the influence of resuspension—Results from two tunnel studies. Atmospheric Environment, 36(30), 4735–4744. doi:10.1016/S1352-2310(02)00561-7.

    Article  CAS  Google Scholar 

  • Terzaghi, E., Wild, E., Zacchello, G., Cerabolini, B. E. L., Jones, K. C., & Di Guardo, A. (2013). Forest Filter Effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmospheric Environment, 74, 378–384. doi:10.1016/j.atmosenv.2013.04.013.

    Article  CAS  Google Scholar 

  • USEPA. (1989). Risk Assessment Guidance for Superfund (RAGS) Part A. EPA/540/1-89/002. http://www.epa.gov/oswer/riskassessment/ragsa/.

  • USEPA (1991). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual Supplemental Guidance: “Standard Default Exposure Factors”. OSWER Directive 9285.6-03. Office of Emergency and Remedial Response. Toxics Integration Branch.

  • USEPA. (1997). Exposure factors handbook—general factors. EPA/600/P-95/002Fa, vol. I. Office of Research and Development. National Center for Environmental Assessment. US Environmental Protection Agency. Washington, DC. http://www.epa.gov/ncea/pdfs/efh/front.pdf.

  • USEPA. (2003). Integrated Risk Information System Database (IRIS).

  • Uzu, G., Sauvain, J.-J., Baeza-Squiban, A., Riediker, M., Hohl, M. S. S., Val, S., et al. (2011). In vitro assessment of the pulmonary toxicity and gastric availability of lead-rich particles from a lead recycling plant. Environmental Science and Technology, 45(18), 7888–7895. doi:10.1021/es200374c.

    Article  CAS  Google Scholar 

  • Uzu, G., Schreck, E., Xiong, T., Macouin, M., Lévêque, T., Fayomi, B., & Dumat, C. (2014). Urban market gardening in Africa: Foliar uptake of metal(loid)s and their bioaccessibility in vegetables; implications in terms of health risks. Water, Air, and Soil Pollution,. doi:10.1007/s11270-014-2185-5.

    Google Scholar 

  • Uzu, G., Sobanska, S., Sarret, G., Muñoz, M., & Dumat, C. (2010). Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environmental Science and Technology, 44(3), 1036–1042. doi:10.1021/es902190u.

    Article  CAS  Google Scholar 

  • Van Dijk, C., van Doorn, W., & van Alfen, B. (2015). Long term plant biomonitoring in the vicinity of waste incinerators in the Netherlands. Chemosphere, 122, 45–51. doi:10.1016/j.chemosphere.2014.11.002.

    Article  Google Scholar 

  • Wang, Z., Chen, J., Chai, L., Yang, Z., Huang, S., & Zheng, Y. (2011). Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China. Journal of Hazardous Materials, 190(1–3), 980–985. doi:10.1016/j.jhazmat.2011.04.039.

    Article  CAS  Google Scholar 

  • Wang, X., Sato, T., Xing, B., & Tao, S. (2005). Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. The Science of the Total Environment, 350(1–3), 28–37. doi:10.1016/j.scitotenv.2004.09.044.

    Article  CAS  Google Scholar 

  • Wiseman, C. L. S., Zereini, F., & Püttmann, W. (2014). Metal translocation patterns in Solanum melongena grown in close proximity to traffic. Environmental Science and Pollution Research International, 21(2), 1572–1581. doi:10.1007/s11356-013-2039-5.

    Article  CAS  Google Scholar 

  • World Health Organization (2014a). Air quality in cities database, ambient (outdoor) air pollution in cities database. http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/.

  • World Health Organization. (2014b). Ambient (outdoor) air quality and health. http://www.who.int/mediacentre/factsheets/fs313/en/.

  • Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., et al. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409(19), 4016–4030. doi:10.1016/j.scitotenv.2011.05.019.

    CAS  Google Scholar 

  • Xiong, T. T., Leveque, T., Austruy, A., Goix, S., Schreck, E., Dappe, V., et al. (2014a). Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environmental Geochemistry and Health, 36(5), 897–909. doi:10.1007/s10653-014-9607-6.

    Article  CAS  Google Scholar 

  • Xiong, T., Leveque, T., Shahid, M., Foucault, Y., & Dumat, C. (2014b). Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. Journal of Environmental Quality, 43(5), 1593–1600. doi:10.2134/jeq2013.11.0469.

    Article  Google Scholar 

  • Xu, X., Li, Y., Wang, Y., & Wang, Y. (2011). Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 25(1), 294–300. doi:10.1016/j.tiv.2010.09.007.

    Article  Google Scholar 

  • Zeng, L., Li, N., Shao, D., Kang, Y., Zhang, Q., Lu, P., et al. (2014). Concentrations, sources, and risk assessment of polychlorinated biphenyls in vegetables near a waste-incinerator site, South China. Archives of Environmental Contamination and Toxicology, 67, 78–86. doi:10.1007/s00244-014-0045-3.

    Article  CAS  Google Scholar 

  • Zhang, Z., Kleinstreuer, C., Donohue, J. F., & Kim, C. S. (2005). Comparison of micro- and nano-size particle depositions in a human upper airway model. Journal of Aerosol Science, 36(2), 211–233. doi:10.1016/j.jaerosci.2004.08.006.

    Article  CAS  Google Scholar 

  • Zheng, N., Wang, Q., Zhang, X., Zheng, D., Zhang, Z., & Zhang, S. (2007). Population health risk due to dietary intake of heavy metals in the industrial area of Huludao City, China. The Science of the Total Environment, 387(1–3), 96–104. doi:10.1016/j.scitotenv.2007.07.044.

    Article  CAS  Google Scholar 

  • Zhou, W., Li, C., & Chan, J. C. L. (2006). The interdecadal variations of the summer monsoon rainfall over South China. Meteorology and Atmospheric Physics, 93(3–4), 165–175. doi:10.1007/s00703-006-0184-9.

    Article  Google Scholar 

  • Zhou, S., Yuan, Q., Li, W., Lu, Y., Zhang, Y., & Wang, W. (2014). Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. Journal of Environmental Sciences, 26(1), 205–213. doi:10.1016/S1001-0742(13)60399-X.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the International Xu Guangqi program (32155SC) “Global analysis of the quality of vegetables cultivated near waste incinerators: environmental and human health risk assessment” for financing this project. This work also received support from the National Research Agency under reference ANR-12-0011-VBDU and from INPT to develop “Reseau agriville” http://reseau-agriville.com/ on sustainable urban agricultures. Thanks to Leigh Gebbie for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Dumat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, T., Dumat, C., Pierart, A. et al. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas, South China. Environ Geochem Health 38, 1283–1301 (2016). https://doi.org/10.1007/s10653-016-9796-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9796-2

Keywords

Navigation