Skip to main content
Log in

Origins of functional nucleotide polymorphisms in a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

qLTG3-1 is a major quantitative trait locus (QTL) controlling tolerance to low-temperature at the seed germination stage (termed low-temperature germinability) in rice using a population derived from the cross between Italica Livorno from Italy and Hayamasari from Japan. Map-based cloning identified that qLTG3-1 encodes a protein of unknown function. The molecular identification of this major QTL could make it possible to identify allelic variation and favorable alleles for rice breeding programs. The present study examined the identification of qLTG3-1 alleles and their distribution among 62 landraces of Asian cultivated rice (Oryza sativa L.) collected from 19 different countries, termed the rice core collection. In the coding region, a single non-synonymous substitution and 3 in-frame insertion/deletion polymorphisms (indels) were detected. The almost completely conserved protein alignment of qLTG3-1 was also identified among 5 Oryza species, suggesting that the function of qLTG3-1 is critical for seed germination or for rice growth by pleiotropic effects of the gene. The functional nucleotide polymorphisms (FNPs), a 71-bp deletion found in Hayamasari and an amino acid substitution found in Nipponbare, was identified in varieties from Japan. These alleles with FNPs might be adapted to rice cultivation in specific local conditions. The present results may contribute to the utilization of favorable alleles of qLTG3-1 for the improvement of low-temperature germinability in rice breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:22–29

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Blanco C, Aarts MG, Bentsink L, Keurentjes JJ, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877–1896

    Article  PubMed  CAS  Google Scholar 

  • Asano K, Takashi T, Miura K, Qian Q, Kitano H, Matsuoka M, Ashikari M (2007) Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breed Sci 57:53–58

    Article  CAS  Google Scholar 

  • Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci 52:143–150

    Article  CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Lou QJ, Sun ZX, Xing YZ, Yu XQ, Luo LJ (2006) QTL mapping of low temperature on germination rate of rice. Rice Sci 13:93–98

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Donohue K (2009) Completing the cycle: maternal effects as the missing link in plant life histories. Philos Trans R Soc Lond B Biol Sci 364:1059–1074

    Article  PubMed  CAS  Google Scholar 

  • Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J (2005) The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution 59:758–770

    PubMed  Google Scholar 

  • Ebana K, Kojima Y, Fukuoka S, Nagamine T, Kawase M (2008) Development of mini core collection of Japanese rice landrace. Breed Sci 58:281–291

    Article  Google Scholar 

  • Fujino K (2003) Photoperiod sensitivity gene controlling heading date in rice cultivars in the northernmost region of Japan. Euphytica 131:97–103

    Article  CAS  Google Scholar 

  • Fujino K, Matsuda Y (2010) Genome-wide analysis of genes targeted by qLTG3–1 controlling low-temperature germinability in rice. Plant Mol Biol 72:137–152

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Sekiguchi H (2005a) Mapping of QTLs conferring extremely early heading in rice (Oryza sativa L.). Theor Appl Genet 111:393–398

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Sekiguchi H (2005b) Identification of QTLs conferring genetic variation for heading date among rice varieties at the northern-limit of rice cultivation. Breed Sci 55:141–146

    Article  CAS  Google Scholar 

  • Fujino K, Sekiguchi H (2008) Mapping of quantitative trait loci controlling heading date among rice cultivars in the northernmost region of Japan. Breed Sci 58:367–373

    Article  CAS  Google Scholar 

  • Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M (2004) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108:794–799

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Sekiguchi H, Kiguchi T (2005) Identification of an active transposon in intact rice plants. Mol Genet Genom 273:150–157

    Article  CAS  Google Scholar 

  • Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3–1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA 105:12623–12628

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Wu J, Sekiguchi H, Ito T, Izawa T, Matsumoto T (2010) Multiple introgression events surrounding the Hd1 flowering-time gene in cultivated rice, Oryza sativa L. Mol Genet Genom 284:137–146

    Article  CAS  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  PubMed  CAS  Google Scholar 

  • Heu MH (1986) Inheritance of chalkiness of brown rice found in a non glutinous cultivar “Pokhareli Mashino”. Korean J Breed 18:162–166

    Google Scholar 

  • Hori K, Sugimoto K, Nonoue Y, Ono N, Matsubara K, Yamanouchi U, Abe A, Takeuchi Y, Yano M (2010) Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars. Theor Appl Genet 120:1547–1557

    Article  PubMed  Google Scholar 

  • Iwata N, Fujino K (2010) Genetic effects of major QTLs controlling low-temperature germinability in different genetic backgrounds in rice (Oryza sativa L.). Genome 53:763–768

    Article  PubMed  Google Scholar 

  • Ji SL, Jiang L, WY H, Zhang WW, Liu X, Liu SJ, Chen LM, Zhai HQ, Wan JM (2009) Quantitative trait loci mapping and stability for low temperature germination ability of rice. Plant Breed 128:387–392

    Article  Google Scholar 

  • Jiang L, Liu S, Hou M, Tang J, Chen L, Zhai H, Wan J (2006) Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Res 98:68–75

    Article  Google Scholar 

  • Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M (2005) Development of an RFLP-based rice diversity research set of germplasm. Breed Sci 55:431–440

    Article  CAS  Google Scholar 

  • Kovach MJ, McCouch SR (2008) Leveraging natural diversity: back through the bottleneck. Curr Opin Plant Biol 11:193–200

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lu JJ, Chang TT (1980) Rice in its temporal and spatial perspectives. In: Luh BS (ed) Rice: production and utilization AVI Publishing Co Inc. Westport, CT, pp 1–74

    Google Scholar 

  • Mikami I, Aikawa M, Hirano H, Sano Y (1999) Altered tissue-specific expression at the Wx gene of the opaque mutants in rice. Euphytica 105:91–97

    Article  CAS  Google Scholar 

  • Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano HY, Suzuki Y, Sano Y (2008) Allelic diversification at the wx locus in landraces of Asian rice. Theor Appl Genet 116:979–989

    Article  PubMed  CAS  Google Scholar 

  • Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Lin SY, Yano M, Nagamine T (2001) Mapping quantitative trait loci controlling low temperature germinability in rice (Oryza sativa L.). Breed Sci 51:293–299

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Innan H (2002) Molecular population genetics. Curr Opin Plant Biol 5:69–73

    Article  PubMed  CAS  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA 101:9885–9890

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Sano Y (1984) Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet 64:467–473

    Google Scholar 

  • Sato H, Suzuki Y, Sakai M, Imbe T (2002) Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.). Breed Sci 52:131–135

    Article  CAS  Google Scholar 

  • Sweeney MT, Thomson MJ, Cho YG, Park YJ, Williamson SH, Bustamante CD, McCouch SR (2007) Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet 3:e133

    Article  PubMed  Google Scholar 

  • Wilczek AM, Roe JL, Knapp MC, Cooper MD, Lopez-Gallego C, Martin LJ, Muir CD, Sim S, Walker A, Anderson J, Egan JF, Moyers BT, Petipas R, Giakountis A, Charbit E, Coupland G, Welch SM, Schmitt J (2009) Effects of genetic perturbation on seasonal life history plasticity. Science 323:930–934

    Article  PubMed  CAS  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Yonemaru J, Yano M (2009) Towards the understanding of complex traits in rice: substantially or superficially? DNA Res 16:141–154

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZH, Qu XS, Wan S, Chen LH, Zhu YG (2005) Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (Oryza sativa). Ann Bot (Lond) 95:423–429

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated research project for plant, insect and animal using genome technology QT-3007 and Genomics for Agricultural Innovation QTL-1005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Fujino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujino, K., Sekiguchi, H. Origins of functional nucleotide polymorphisms in a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Plant Mol Biol 75, 1–10 (2011). https://doi.org/10.1007/s11103-010-9697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9697-1

Keywords

Navigation